Удельный импульс тяги. Тип двигателя(Удельный импульс). Перспективные ракетные системы

По сценарию фильма и по книге — он снабжён высокоимпульсными ионными двигателями.

Нынешняя ситуация с освоением космического пространства в чём-то похожа на середину XIX века, когда испытанные и проверенные временем технологии парусного флота вдруг оказались не более, чем устаревшими артефактами прошлой эпохи. Когда блистательный русский Черноморский флот, ещё недавно одержавший победу над турками при Синопе, вдруг оказался заперт в гавани Севастополя соединённой эскадрой союзников, а чайные клиперы на «ревущих сороковых», «неистовых пятидесятых» и «пронзительных шестидесятых» сменили юркие китобойные судёнышки, использовавшие первые паровые двигателя.

Тогда оказалось, что вопрос постоянства хода и неподверженности стихии для морского флота встал гораздо острее и насущнее, нежели вариант обуздания силы ветра и демонстрации рекордов скорости последними «Катти Сарк». Тихоходные и неповоротливые, но независимые от силы ветра пароходы всего лишь за неполные полвека окончательно вытеснили парусники на обочину морского дела, оставив за ними роль учебных судов и музеев.

Это была одна из самых радикальных революций в морском деле.
Следующий эволюционный шаг, отказ от использования топлива, как такового и переход на ядерную энергию в морском флоте так и не произошёл: атомные реакторы остались уделом лишь военно-морского флота ведущих мировых держав и «фирменным знаком» российского арктического ледокольного флота.

Похожая ситуация сейчас разворачивается и в освоении космоса. «Грести под парусами» химического топлива дальше в открытый космос уже просто невозможно — но вот на что поменять старые и проверенные химические ракеты — по-прежнему является вопросом конструктурских работ и инженерных изысканий.


Во-первых, надо сказать, почему человечество столь нежно полюбило ракеты с химическим топливом.
Надо сказать, что это скорее был «брак по расчёту», нежели какой-то «любовный союз». Ракета с химическим топливом и была, и есть лишь одним из немногих вариантов оторвать хоть что-то от поверхности нашей Земли. Для ракет, стартующих с земной поверхности, существенной является гравитационная помеха, о неизбежности которой я уже как-то говорил .

Масса двигателей, о которых я расскажу дальше по тексту статьи, гораздо больше подходят для условий космоса, но они практически бесполезны для старта с Земли — их тяга гораздо меньше их собственного веса, не говоря уже о массе потребного для них топлива или весе полезной нагрузки. В результате соотношение реактивной тяги двигателей (T) к массе всей ракеты (W) у таких двигателей меньше единицы (T/W<1) и ничего поднять с поверхности Земли они не могут.

Стендовые испытания двигателя J-2X, аналога двигателя J-2 лунной ракеты «Сатурн-V». Именно этот двигатель отправлял «Аполлоны» у Луне. Но это было, в общем-то, вынужденное решение.

Однако, в реальности физики, химии и матераловедения достаточно сложно построить двигатель и с высокой удельной тягой, и с высоким удельным импульсом.
И, если понятие «тяги» нам интуитивно понятно (ну можешь поднять 200 килограммовую штангу — у тебя хорошая «тяга», а не можешь — так, задохлик. В общем, всё как у людей), то понятие «удельного импульса» всё же лучше объяснить.
Если тяга — это условная «сила» двигателя, то удельный импульс — это, скорее, его «выносливость», то есть возможность достаточно долго сообщать полезной нагрузке дополнительный импульс на ограниченных запасах топлива.

Измеряется удельный импульс или в секундах (если использовать «техническую» систему единиц МКГСС) или в метрах в секунду (если использовать «научную» систему единиц СИ).
Различается и физический смысл «секунд» (как единиц измерения времени) и «метров в секунду» (как единиц измерения скорости), хотя он описывает одни и те же параметры условного реактивного двигателя, хоть и с разных сторон.

В случае выражения удельного импульса двигателя в секундах получается, что «удельный импульс — это количество секунд , которое данный двигатель проработает на 1 килограмме топлива, создавая тягу в одну килограмм-силу» (МКГСС).
Если же вы выражаете удельный импульс двигателя в метрах в секунду, то у вас получается более сложный вывод, основанный на утверждении о том, что «удельный импульс — это отношение тяги двигателя в ньютонах к секундному расходу массы топлива» (СИ).
В системе СИ размерность ньютона выражается как кг-м/c 2 и после сокращения с дополнительными кг/c в знаменателе вы получите размерность скорости — метры в секунду .
Интересно, что получившееся в итоге значение скорости для удельного импульса будет практически строго соответствовать скорости истечения продуктов сгорания из сопла любого двигателя. Так, например, удельный импульс современных жидкостных реактивных двигателей (ЖРД), составляющий около 450 секунд, соответствует скорости истечения рабочего тела (продуктов сгорания) в 4500 метров в секунду.


Испытания водородного ЖРД. Скорость истечения продуктов сгорания — около 4500 м/c, удельный импульс — около 450 секунд.

При этом, что важно, в отличии от выражения его в метрах в секунду, в случае задания вами удельного импульса в секундах он никак не оказывается связан с фактическим временем работы двигателя. Он лишь показывает удельный расход топлива двигателем, который может работать, в зависимости от наличия топлива, как дольше времени удельного импульса, так и меньше его.

На первый взгляд, скорость истечения рабочего тела в 4500 метров в секунду (13М) — это в тринадцать раз больше скорости звука на уровне моря (340 м/с). Громадная скорость для нашего обыденного восприятия и именно поэтому все сопла ЖРД делают расширяющимися, сверхзвуковыми соплами Лаваля.

Выше скорости истечения в паре «водород-кислород» получали только на весьма экзотической троице «литий-водород-фтор» ещё в 1968 году . Но прибавка к удельному импульсу (542 секунды) и скорости истечения (5 320 м/сек) на таком токсическом и взрывоопасном топливе была очень незначительной, в силу чего от использования трёхкомпонентного топлива с фторным окислителем в итоге отказались.

Ещё более «тупыми» и «невыносливыми» оказываются (по сравнению с ЖРД) ракетные двигатели на твёрдом топливе (РДТТ). Эти усовершенствованные пороховые шутихи оказываются «спринтерами с коротким дыханием» — большинство существующих РДТТ имеют удельный импульс в районе 250-270 секунд, что соответствует скорости истечения продуктов сгорания всего в 2500-2700 м/c. Зато РДТТ могут обеспечивать громадную начальную тягу, в силу чего их и используют как стартовые ускорители.


Наземные испытания стартового ускорителя «Спейс Шаттла». Пламени выше крыши, тяги — завались, а удельного импульса — чуть-чуть.

Но много это или мало — 4500 метров в секунду или 450 секунд?
Даже для старта с Земли на околоземную орбиту с использованием одноступенчатого вывода (по-английски это называется SSTO — single stage to orbit) этого оказывается сугубо недостаточно. Приходится мастерить различные многоступенчатые схемы, в результате чего современные ракеты выводят на орбиту грузы в составе двух, а иногда — и трёх ступеней.

При этом все нынешние идеи «допилить химический паровоз в стремительную сверхсветовую ракету» всё равно упираются в ограниченность возможностей РДТТ и ЖРД и в пресловутую формулу Циолковского, в которую удельный импульс входит в качестве множителя:

Здесь I — тот самый удельный импульс двигателя.
Поскольку он связан с отношением начальной (M 1 ) и конечной (М 2 ) масс летательного аппарата через натуральный логарифм, то получается, что увеличение удельного импульса двигателя в 2 раза при заданной конечной скорости уменьшает в те же два раза натуральный логарифм отношения M 1 к М 2 или же, чтобы было понятнее, изменяет соотношение M 1 к М 2 в виде второй степени (или квадратного корня) от изначального их соотношения.
Поскольку задаваемая зависимость у нас степенная, различия по удельному импульсу в 4 или 8 раз уже зададут более высокие степени и корни, в результате чего соотношение M 1 к М 2 для двигателей, отличающихся по удельному импульсу в 4 и в 8 раз, уже будет составлять четвёртую или восьмую степень оригинального соотношения, соответственно.


«Ядерный космолёт» МГ-19 — птица, опередившая своё время.

Пока же мы плотно сидим на химическом топливе для ЖРД и РДТТ наших ракет — себестоимость наших грузов даже на низкой околоземной орбите будет составлять тысячи долларов за каждый килограмм груза.

Но какого рода двигатели нам нужны, если вы собрались лететь не просто на околоземную орбиту, а к Марсу или к Луне? И если мы уже столь высоко ценим каждый килограмм груза на низкой околоземной орбите и слабо представляем себе варианты выхода из этого порочного круга?

Отвечу: нам нужен двигатель гораздо более высокоимпульсный, нежели химические двигатели наших современных, «земных» ракет.
Вот вам пример того, как натуральный логарифм в формуле Циолковского влияет на соотношение масс и на общую массу будущего марсианского корабля, в случае использования им различных двигательных систем:


Сравнение различных вариантов марсианского транспортного корабля: на химическом топливе, пара «водород-кислород» (5900 тонн, 460 секунд удельного импульса, 4600 м/с истечения), ядерный твердотельный двигатель (3500 тонн, 950 секунд удельного импульса, 9500 м/c истечения) и с электрическим ракетным двигателем (250 тонн, 3000-10000 секунд удельного импульса, скорость истечения 30-100 км/c).

Как вы видите, вариант марсианской эпопеи на химическом горючем практически нереален: если принять в качестве допущения, что на химическом топливе обеспечат нам себестоимость грузов на низкой околоземной орбите в 1000 долларов за килограмм, то 5900 тонн марсианского корабля обойдутся Земле в 5,9 миллиардов долларов только в стоимости вывода на орбиту (без стоимости самого корабля и НИОКР по нему).
А выводить его надо будет доброй полусотней запусков уникальных и сверхтяжёлых ракет.

Не сильно спасает ситуацию и межпланетный корабль с твердотельным ЯРД, над разработкой которого США и СССР в 1960е-1970е годы.
Полученный тогда на американском проекте NERVA и в испытаниях советского РД-0410 удельный импульс в районе 850-950 секунд, конечно, экономит вес марсианского корабля, но всё равно заставляет думать минимум о тридцати запусках тяжёлых ракет носителей и длительной сборке корабля на орбите.

И, наконец, различные концепции электрических ракетных двигателей с их возможными импульсами от 3000 до 30 000 секунд, всё же дают нам достаточно оптимизма в вопросе будущего освоения Солнечной системы. Да, не , и не с прямоточным термоядерным ракетным двигателем (ТЯРД), но всё-таки — реальный корабль, массой всего лишь в 250 тонн, который уже можно собрать на орбите Земли, даже опираясь на наши несовершенные химические ракеты, с мощными, но слабоимпульсными ЖРД и РДТТ.


Выбор источника энергии двигателей, между солнечными батареями и ядерным реактором для будущего марсианского корабля — пока что открыт. Но вот даже к Юпитеру уже, скорее всего, надо лететь с реактором на борту.

Каким из многих видов электрических ракетных двигателей будет снабжён будущий марсианский транспортный корабль — пока что вопрос открытый.
Если в качестве источника электроэнергии на борту, в общем-то, есть только две возможности: солнечные батареи и ядерный реактор, то в качестве двигателей могут использоваться очень разные высокоимпульсные электрические ракетные двигателя. Это и ионные двигатели, и плазменные (к которым относится и уже упомянутый по ссылке VASIMR), и различные варианты электростатических или электротермических двигателей.

Все эти двигатели уже обеспечивают удельный импульс от 3 000 до 10 000 секунд, а некоторые проекты обещают и 30 000 секунд удельного импульса, что соответствует скорости истечения рабочего тела в безумные 300 километров в секунду.

В прошлом году сообщено , что самые мощные и тяговооружённые на сегодняшний день в семействе электрических ракетных двигателей ионные двигатели перешагнули рубеж в 10 000 секунд, показав удельный импульс в 14 600 секунд.
Неизвестно, насколько ресурсными оказались эти двигатели, но, в любом случае, новости об совершенствовании «ионников» не могут не радовать.


В ионном двигателе нет брутальности ЖРД или РДТТ, но из его зрачка на вас смотрит вся Солнечная система. НАША система.

Что приятно, успехи в деле испытания ионных двигателей есть и в России.

О параметрах этих изделий можно судить по публикации в журнале «Труды МАИ» (номер 60 за декабрь 2012 год), в котором были изложены некоторые параметры как самих ионных двигателей, так и снабжаемых ими перспективных космических аппаратов.

Описанный там ионный двигатель ВЧИД-45 (который и был, скорее всего, испытан на полигоне КБХА) обладает следующими параметрами: номинальная мощностью 35 кВт, тяга 760 мН (0,076 кг) и удельным импульсом до 7000 секунд (скорость истечения ионов — 70 км/c).
По сравнению с уже испытанными в космосе ионными двигателями, ВЧИД где-то на порядок мощнее — самый мощный ионный двигатель, работавший в космосе, имел тягу в 91 мН и был установлен на американском исследовательском зонде «Дип Спейс-1» (Deep Space-1).

Планируемый ресурс двигателя был заявлен, как 50 000 часов, что и есть главным прорывом проекта: до сих пор ионные двигатели страдали от быстрой деградации ускоряющих ионы решёток и электродов, которые просто «съедало» набегающим потоком высокоэнергетических ионов.

Питать ионные двигатели энергией должна бортовая ядерная энергетическая установка (ЯЭУ) мощностью 1 МВт, которая сможет обеспечить электроэнергией кластер из тридцати таких двигателей.

В перспективе «Роскосмосом» рассмотривались три варианта буксиров, снабжаемых ионными двигателями: «лунный грузовик» с ядерной энергетической установкой мощностью в 1МВт и марсианские буксиры для пилотируемых миссий с ЯЭУ мощностью в 2 и в 4 МВт.


В 2003-2005 годах НАСА разрабатывала корабль ЯЭУ и с ионными двигателями в рамках проекта «Прометей». Мощность бортовой ЯЭУ «Прометея» должна была составить 250 кВт. Нетрудно посчитать, что «лунный грузовик» от «Роскосмоса» должен быть, как минимум, вчетверо мощнее.

«Лунный грузовик» с ЯЭУ мощностью 1 МВт на платформе с четырьмя кластерами по десять двигателей ВЧИД-45 в каждом (общая массадвигательной установки при этом составляет 5.7 тонны) сможет обеспечить посадку на Луну модуля массой в 25 тонн.
За время активного существования «лунный грузовик» сможет осуществить минимум пять транспортных операций с перелетом с низкой геоцентрической орбиты (высотой в 800 км) на низкую селеноцентрическую орбиту (высотой в 100 км) с общей грузоподъемностью на низкой селеноцентрической орбите в 128,5 тонны (масса «грузовика», топлива и полезной нагрузки) и с расходом рабочего тела порядка 10,8 тонн на каждый перелет туда и обратно.

Для сравнения — при использовании классической ракеты на химическом топливе (пара водоро-кислород, ракета «Сатурн-V», программа «Аполлон») с низкой околоземной орбиты стартовала конструкция весом в 145 тонн, на орбиту полёта к Луне выводилось 46 тонн, лунный посадочный модуль весил 15 тонн, а возвращаемая капсула «Аполлона» весила всего 5 тонн).

Для марсианских версий буксиров пока что есть только общая оценка: их стартовая масса должна составить около 215 тонн, а время полета туда и обратно составит два с половиной года.

В публикации указано, что двигатель ВЧИД может быть смаштабирован и на другие номиналы, если есть потребность в увеличении тяги, если количество двигателей в кластере двигательной установки должно быть уменьшено. Например, двигатель может быть разработан на тех же принципах, если потребуются уровни мощности на уровне 79 кВт или 105 кВт. В этом случае тяга двигателя будет составлять 1.52 Н и 2.27 Н, соответственно. Удельный импульс может быть повышен с 6880 с до 7120 с или 7320 с, а общий КПД системы — с 78.6 % до 81.3 % или даже 83.5 %. Однако, стоимости разработки и квалификации опытных образцов при этом возрастут примерно пропорционально третьей степени диаметра двигателя.

В общем, всё только начинается...

Гордые парусники ещё бороздят просторы наших «ревущих сороковых», но где-то, в тиши кабинетов и лабораторий уже рисуют чертежи стальных китобоев с паровым двигателем, которые позволят будущему Ахаву догнать своего Моби Дика...

Всем, наверное, известно, что космос в основном состоит из вакуума. И в этом вакууме практически нет ничего, от чего можно было бы оттолкнуться, как мы отталкиваемся от пола чтобы идти. А раз так, то чтобы менять своё движение нужным нам образом, нам нужно что-то из себя выбрасывать. Ну и, наконец, всем известно, что транспорт, умеющий так делать, называется ракетой.
Ракеты придумали очень и очень давно, более полутора тысяч лет назад. Но серьёзно теоретически разобраться в теории реактивного движения смогли только к самому концу XIX века. В частности именно тогда великий русский учёный Константин Эдуардович Циолковский вывел свою знаменитую формулу:

здесь V - это конечная скорость ракеты, I - удельный импульс, M - масса заправленной ракеты, а m - масса ракеты без топлива (или иного рабочего тела).

Удельный импульс - это отношение тяги двигателя к расходу топлива или иного рабочего тела. В системе СИ расход мы измеряем в кг/с, а тягу - в ньютонах. Ньютон, в свою очередь, равен кг*м/с 2 . В результате получаем, что удельный импульс измеряется, как и скорость, в метрах в секунду. По сути он и есть скорость - эффективная скорость струи рабочего тела, вырывающегося из сопла двигателя.
Есть и другое определение удельного импульса: время, в течении которого с помощью 1 кг топлива (или иного рабочего тела) двигатель сможет создавать тягу 1 кгс (килограмм-сила). Тогда он измеряется в секундах.
В формулу Циолковского надо подставлять удельный импульс из первого определения, но второе определение часто удобнее в расчётах. Если мы хотим перевести один вариант удельного импульса в другой, то можно пользоваться простой формулой: 1 м/с = 9,81 с. Хотя чаще всего её ещё сильнее упрощают до: 1 м/с = 10 с. Я здесь буду использовать именно последнюю. Разумеется, обе формулы применимы только для удельного импульса, переводить время "убегания" молока в необходимую для спасения плиты скорость бега повара по ним не стоит:-)

Что же такого интересного в этой формуле? Вполне очевидные вещи: чем быстрее струя газа и больше топлива в ракете - тем быстрее она полетит.
А интересного в ней логарифм. Эта функция очень медленно увеличивается с ростом отношения масс под ним. Чтобы логарифм был равен 1, оно должно быть 2,72. Т.е. чтобы ракета "сухой" массой 10 т разогналась до скорости выбрасываемого ею рабочего тела, ей нужно более 17 т этого самого рабочего тела. Чтобы разогнать эту ракету до двух скоростей рабочего тела, топлива нужно уже 64 т. Для трёх - 191 т. Наконец, для четырёх скоростей рабочего тела потребуется уже 534 тонны рабочего тела. Очевидно, что разместить в ракете массой 10 т 534 тонны рабочего тела, т.е. в пятьдесят с лишним раз больше её собственной массы - это очень непростая задача. Четыре скорости истечения струи - это ориентировочный технический предел скорости ракеты.

Разумеется, здесь не учитывается гравитация. Она сильно тормозит ракету при удалении от Земли или от Солнца, зато разгоняет ракету при приближении к Земле и Солнцу, а также при пролёте мимо планет по определённым траекториям (пролёт по другим траекториям может затормозить). В результате после выключения двигателей ракет-носителей их скорость меньше той, что можно рассчитать по этой формуле, но максимальная скрость, когда-либо достигнутая космическим аппаратом, в несколько раз превосходит ту, которую ему может сообщить современная ракета. Но сейчас это для нас не имеет значения.

Ну так к чему же я всё это? А к тому, на сколько важен удельный импульс.
Допустим, нам нужно развить скорость 18 км/с. Примерно столько нужно для полёта за пределы Солнечной системы (точная скорость, необходимая для такого полёта, зависит от того, в каком направлении мы стартуем).
Пусть удельный импульс двигателя нашей ракеты 450 с или 4500 м/с. Это соответствует лучшим жидкостным ракетным двигателям и близко к теоретическому пределу для химических двигателей (если не использовать слишком токсичные компоненты типа фтора).
В таком случае для разгона ракеты массой 10 т потребуются как раз те самые 534 тонны топлива и окислителя (в данном случае - жидких кислорода и водорода). Заправленная ракета будет весить при старте 544 тонны и лишь 10 разгонятся до нужной нам скорости...
А если сделать удельный импульс всего в два раза больше: 900 с или 9000 м/с? Тогда для разгона ракеты массой 10 т потребуется только 64 тонны рабочего тела! Т.е. ракета при старте будет весить лишь 74 тонны! Если же при старте ракета будет весить теже 544 т, то разгонятся до 18 км/с уже более 73-х тонн!
Таким образом двукратное увеличение удельного импульса позволяет разогнать в семь с лишним раз больше груза, потратив меньше рабочего тела.
А что если у нас будет удельный импульс 1350 с или 13 500 м/с? Плучим 28 т рабочего тела на 10 т массы ракеты, т.е. 38 т стартовой массы. Или возможность разогнать до 18 км/с 143 тонны из 544 тонн стартовой массы.
Наконец, давайте помечтаем о 3600 с или 36 000 м/с... 6,5 т рабочего тела на разгон 10 т, т.е. 16,5 т стартовой массы. Или разгон 330 т из 544 стартовых.
Повышение удельного импульса в 2 раза улучшает нашу ракету (снижает стартовую массу или повышает разгоняемую) в 7,3 раза, повышение в 3 раза - в 14,3 раза, а повышение в 8 раз - улучшение в 33 раза!

Но как нам достичь такого удельного импульса?..
Наверняка многие слышали про плазменные и ионные двигатели, а может и про электроракетные двигатели вообще. В таких двигателях для разгона рабочего тела используется не заключённая в самом рабочем теле, а подводимая извне энергия. Благодаря этому такие двигатели принципиально не имеют ограничения по удельному импульсу. Хоть 1 000 000 м/с! Вот только одно НО...
При удельном импульсе в 450 с на разгон 1 кг до тех самых 18 км/с мы потратим примерно 541 МДж энергии. При 900 с - 259 МДж. При 1350 с - 255 МДж. Пока всё хорошо. А вот дальше дело хуже... При 3600 с - 421 МДж. Дальнейший рост удельного импульса приведёт к ещё большему росту энергозатрат, т.к. масса рабочего тела уже будет уменьшаться не так быстро, как будет расти квадрат его скорости. Минимальна эта энергия будет при удельном импульсе, равном примерн 0,63 от конечной скорости. В нашем случае это 1130 с или 11 300 м/с.
"Ну и что? - справедливо спросит читатель - Ведь сейчас мы тратим 541 МДж, а при 3600 с будем тратить лишь 421!"
А то, что сейчас все эти 541 МДж содержатся в самом рабочем теле, а в случае электроракетных двигателей нам их нужно подводить извне...
Химические источники тока, очевидно, тут не имеют смысла: чем превращать водород и кислород в воду в топливном элементе (который отнюдь не лёгкий), чтобы запитать от него ионный двигатель, который будет разгонять какой-нибудь ксенон, куда проще и эффективнее сразу сжечь водород в камере сгорания обычного ЖРД. Солнечные батареи потенциально имеют неограниченый запас энергии, но их мощность весьма мала, так что и тяга у двигателя будет мала. Да ещё и весят эти батареи много. Так что они подходят только для питания двигателей корректировки орбиты спутников. Если мы хотим отправить к другим планетам человека, нам потребуется что-то другое...
Ядерный реактор - отличное решение. Он содержит много энергии, может иметь большую мощность и при этом относительно небольшую массу. Сейчас уже есть проект мощного плазменного двигателя с питанием от ядерного реактора, который планируется использовать для полёта на Марс (VASIMR). Но, увы, система эта далека от идеала... Всё-таки даже ядерный реактор имеет не на столько большое соотношение мощности и массы, чтобы было целесообразно делать ионный двигатель с очень большим удельным импульсом. Увеличим импульс - снизим немного массу рабочего тела, но сильно увеличим массу реактора... Да и всё равно такая система обеспечит ускорение не больше 0,1 м/с 2 . Разгон будет долгим, а про старт с поверхности Земли даже речи не идёт.

Так что же делать?.. Всё просто: нужно выкинуть лишние звенья в цепи передачи энергии от реактора к рабочему телу! В идеале - до нуля. Рабочее тело должно получать энергию от реактора напрямую. И такие системы были созданы. Рельно созданные "в металле" советские и американские ядерные ракетные двигатели на испытаниях вполне достигли удельного импульса в районе 900 секунд! В них жидкий водород проходил через раскалённую до тысяч градусов (но всё ещё твёрдую) активную зону реактора, где он испарялся и нагревался, после чего выбрасывался через сопло.
Рассчёты показывают, что если сделать реактор, рассчитанный на плавление активной зоны, то 1350 секунд - отнюдь не предел удельного импульса. И такие реакторы вполне можно создать при современном уровне технологий.
Наконец, есть проекты и газофазных ядерных ракетных двигателей... В них уран будет испаряться, а удельный импульс будет те самые 3600 секунд или даже ещё выше - до 4500 секунд.
При этом ядерные ракетные двигатели не только гипотетически могут, но и реально работали в атмосфере, а их тяга может в разы превышать их вес, делая возможным старт прямо с Земли.
Жаль, что работы по таким двигателям давно не получают должного финансирования... Думаю, уже вполне очевидно, сколь огромные преимущества даёт даже 2-3-х кратное повышение удельного импульса, не говоря уж о его увеличении в 8, а то и 10 раз.

Но 4500 секунд - это предел для удельного импульса достаточно мощных (способных обеспечить ракете ускорение более 0,1 м/с 2) двигателей или нет?.. Теоретически - нет.
При термоядерных реакциях продукты реакции разлетаются в стороны со скоростью более 10 000 000 м/с, т.е. удельный импульс гипотетического термоядерного ракетного двигателя может составлять 1 000 000 или даже 1 500 000 секунд. И, что самое приятное, энергия для разгона рабочего тела в нём снова содержится в самом рабочем теле! Кстати, технический предел скорости для ракеты с таким двигателем может достигать 20% от скорости света...
Увы, пока термоядерные исследования не зашли достаточно далеко для создания термоядерного ракетного двигателя. С другой стороны, есть все основания считать, что создать его будет даже проще, чем термоядерную элеткростанцию. При старте с орбиты (а в атмосфере, увы, такие двигатели работать не будут) у нас не будет проблем с созданием и поддержанием вакума, двигателю не нужно непрерывно работать месяцами, как реакторам электростанций, наконец, нам не обязательно, чтобы он давал нам электроэнергию! Для питания самого корабля можно использовать отдельный ядерный реактор, а термоядерный пусть питает только самого себя.
При удельном импульсе даже всего 450 000 секунд ракета со стартовой массой 11 т, из которых лишь 1 т будет приходится на термоядерное топливо, разгонится почти до 430 км/с. Если мы хотим корабль разогнать, затормозить, потом снова разогнать и снова затормозить без дозаправки, то того же соотношения (11 т при старте, из них 1 т топливо) хватит для полёта на скорости более 100 км/с. Если взять стартовую массу 12 т из которых 2 т - термояденое топливо, то скорость такого полёта (туда и обратно) составит уже 200 км/с. Так за месяц можно успеть слетать на Марс, поработать там пару недель, и вернуться домой...

Так что, дорогие читатели, освоение Солнечной системы уже ближе, чем на горизонте:-)

Одним из основных показателей эффективности ракетного двигателя является удельная тяга, или удельный импульс. Под этими терминами-синонимами понимается одно и то же, но в различной формулировке.

Удельная тяга - это тяга двигателя, отнесенная к секунд­ному весовому расходу рабочего тела

где секундный расход берется, естественно, в условиях, приведенных к поверхности Земли.

Под удельным понимается импульс, который создает двига­тель на один килограмм веса отброшенного рабочего тела. Раз­личие между удельной тягой и удельным импульсом заключается лишь в том, что первая измеряется в , а второй - в . Как в величине, так и в размерности, ничего не меняется. Удельная тяга и удельный импульс измеряются в секун­дах, а терминологическая приверженность определяется лишь сложившимися традициями. В одних коллективах в силу при­вычки пользуются одним термином, в других - другим. В раз­говорном общении размерность «секунда» обычно игнорируется и заменяется словом «единица». Например, можно услышать: «Двигатель дает 315 единиц удельной тяги…» или - «Это позво­ляет повысить удельный импульс на три единицы...». Согласно выражению (1.5)

Удельная тяга, как видим, определяется в первую очередь скоростью истечения W a , которая зависит не только от свойств топлива, но и от конструктивных особенностей двигателя. В за­висимости от конструкции двигателя меняются условия сгора­ния топлива и истечения продуктов сгорания. Во всех типах ра­кетных двигателей имеется расход масс на внутренние нужды двигателя, как говорят, - на служебные цели. Например, - рас­ход продуктов разложения перекиси водорода на работу тур­бины и расход сжатого газа при стравливании из емкостей. Естественно, при подсчете удельной тяги этот необходимый, но непроизводительный расход массы должен суммироваться с ос­новным, что несколько снижает значение удельной тяги.

Чем выше удельная тяга, тем более совершенным является двигатель, а каждая дополнительная единица удельной тяги ценится очень высоко, особенно для основных силовых установок космических ракет.

Удельная тяга зависит от высоты полета. Поэтому, когда хотят охарактеризовать эффективность двигателя, то называют обычно его пустотную удельную тягу

где W e - эффективная скорость истечения в м/сек.

Значение пустотной удельной тяги современных ракетных двигателей для всех существующих видов химических ракетных топлив лежит в пределах от 250 до 460 единиц.

Государственным Стандартом (ГОСТ 17655-72, Двигатели ракетные жидкостные. Термины и определения) для жидкостных ракетных двигателей в настоящее время введен еще один параметр, характеризующий эффективность, а именно, удельный импульс тяги ЖРД - J y . Он отличается от удельного импульса тем, что тяга относится не к весовому, а к массовому секундному расходу


и измеряется не в сек, а в н с/кг, т. е. в м/с. Удельный импульс тяги ЖРД - это уже знакомая нам эффективная ско­рость истечения, применение которой теперь распространяется и на атмосферный участок полета. Удельный импульс тяги ЖРД связан с удельной тягой очевидным соотношением:

а в числовом выражении:

Многословие термина провоцирует его сокращение, и удельный импульс тяги ЖРД нередко называют удельным импульсом, что влечет за собой смысловое искажение. Выручает, однако, де­сятикратное числовое различие. Если в технической докумен­тации для двигателя на химическом топливе удельный импульс указан в сотнях единиц, значит, речь действительно идет об удельном импульсе, измеряемом в сек; если же - в тысячах, можно не сомневаться, что это - удельный импульс тяги ЖРД, выраженный в м/с.

Эта статья - о характеристике реактивных двигателей. О понятии из взрывотехники см. Импульс взрыва.

Уде́льный и́мпульс - показатель эффективности реактивного двигателя. Иногда для реактивных двигателей используется синоним «удельная тяга » (термин имеет и другие значения), при этом удельная тяга применяется обычно во внутренней баллистике , в то время как удельный импульс - во внешней баллистике. Размерность удельного импульса есть размерность скорости, в системе единиц СИ это метр в секунду.

Энциклопедичный YouTube

    1 / 3

    ✪ РДМ-60-5 №36 (НН-Фруктоза-Сорбит-S-Fe2O3 61,4%-25%-8%-5%-0,6%)

    ✪ РДМ-60-10 №54 (НН-Сорбит-S-Fe2O3 64,35%-32%-3%-0,65%)

    ✪ РДМ-60-10 №51 (НН-Сорбит-S-Fe2O3 64,35%-32%-3%-0,65%)

    Субтитры

Определения

Уде́льный и́мпульс - характеристика реактивного двигателя , равная отношению создаваемого им импульса (количества движения) к расходу топлива (обычно массовому, но может соотноситься и, например, с весом или объёмом топлива). Чем больше удельный импульс, тем меньше топлива надо потратить, чтобы получить определённое количество движения. Теоретически удельный импульс равен скорости истечения продуктов сгорания, фактически может от неё отличаться. Поэтому удельный импульс называют также эффективной (или эквивалентной) скоростью истечения продуктов сгорания.

Уде́льная тя́га - характеристика реактивного двигателя, равная отношению создаваемой им тяги к массовому расходу топлива. Измеряется в метрах в секунду (м/с = Н·с/кг = кгс·с/т. е. м.) и означает, в данной размерности, сколько секунд данный двигатель сможет создавать тягу в 1 Н, истратив при этом 1 кг топлива (или тягу в 1 кгс, истратив при этом 1 т. е. м. топлива). При другом толковании удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс) - это значение можно рассматривать как время, в течение которого двигатель может развивать тягу в 1 кгc, используя массу топлива в 1 кг (то есть весом 1 кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (принимаемое равным 9,80665 м/с² ) .

Формула приближённого расчёта удельного импульса (скорости истечения) для реактивных двигателей на химическом топливе выглядит как [прояснить (не указан комментарий) ]

I y = 16641 ⋅ T k u M ⋅ (1 − p a p k M) , {\displaystyle I_{y}={\sqrt {16641\cdot {\frac {T_{\text{k}}}{uM}}\cdot \left(1-{\frac {p_{\text{a}}}{p_{\text{k}}}}M\right)}},}

где T k - температура газа в камере сгорания (разложения); p k и p a - давление газа соответственно в камере сгорания и на выходе из сопла; М - молекулярная масса газа в камере сгорания; u - коэффициент, характеризующий теплофизические свойства газа в камере (обычно u ≈ 15 ). Как видно из формулы в первом приближении, чем выше температура газа, чем меньше его молекулярная масса и чем выше соотношение давлений в камере РД к окружающему пространству, тем выше удельный импульс .

Сравнение эффективности разных типов двигателей

Удельный импульс является важным параметром двигателя, характеризующим его эффективность. Эта величина не связана напрямую с энергетической эффективностью топлива и тягой двигателя, например, ионные двигатели имеют очень небольшую тягу, но благодаря высокому удельному импульсу находят применение в качестве маневровых двигателей в космической технике.

Характерный удельный импульс для разных типов двигателей
Двигатель Удельный импульс
м/с с
Газотурбинный реактивный двигатель [ ] 30 000(?) 3 000(?)

Удельный импульс тяги

ракетного двигателя, удельный импульс ракетного двигателя, - отношение тяги ракетного двигателя к секундному массовому расходу рабочего тела (производная от импульса тяги по расходуемой массе в данном интервале времени). Выражается в Н(·)с/кг = м/с. На расчётном режиме работы двигателя совпадает со скоростью реактивной струи. Энергетический показатель эффективности двигателя.

  • - см. Тяговое усилие...

    Сельскохозяйственный словарь-справочник

  • - 1) побуждение, толчок, стремление; побудительная причина; 2) мера механического движения; то же, что количество движения; 3) импульс силы - мера действия силы за некоторый промежуток времени...

    Начала современного Естествознания

  • - устройство, вызывающее прекращение работы основной горелки или основной и запальной горелок, когда продукты сгорания выходят через стабилизатор тяги в помещение...

    Строительный словарь

  • - отклонение реактивной струи ТРД или струи, образуемой при вращении винта ТВД от направления, соответствующего крейсерскому режиму полёта, для создания дополнительной подъёмной, управляющей...

    Энциклопедия техники

  • - ракетного двигателя - см. в ст. Удельная тяга....

    Большой энциклопедический политехнический словарь

  • - линия, перпендикулярная плоскости вращения пропеллера. Она совпадает с осью пропеллера...

    Морской словарь

  • - проволока и трос, служащие для управления на расстоянии стрелками, семафорами, предупредительными дисками и приводными замками; тяги эти обхватывают шкив 1 переводного рычага и шкив 6 сигнального привода...
  • - отличается от силы тяги на крюке тем, что последняя относится к равномерному движению поезда, между тем как первая м. б. замерена при наличии как ускорения, так и замедления...

    Технический железнодорожный словарь

  • - воображаемая внешняя сила Fi килограммов, прилагаемая от рельсов к движущим колесам паровоза и определяемая из того условия, что ее работа за один оборот движущих колес равна работе пара в цилиндрах паровозной...

    Технический железнодорожный словарь

  • - действительная сила тяги, приложенная к ободу движущих колес локомотива и для паровоза определяемая из того условия, что ее работа за один оборот движущих колес равна полной работе пара, произведенной в цилиндрах...

    Технический железнодорожный словарь

  • - разъемная головка в виде двух половин, надеваемая на эксцентрик. Одна из половин приболчивается или составляет одно целое с эксцентриковой тягой...

    Технический железнодорожный словарь

  • - 1...

    Телекоммуникационный словарь

  • - прибор, автоматически устанавливающий силу тяги в топке и дымоходах парового котла в зависимости от изменений нагрузки котла...

    Морской словарь

  • - ракетного двигателя, показатель эффективности ракетного двигателя; идентичен удельной тяге...

    Большая Советская энциклопедия

  • - См. МУЖ -...

    В.И. Даль. Пословицы русского народа

  • - Жарг. шк. Шутл. Физика (учебный предмет. ВМН 2003, 120...

    Большой словарь русских поговорок

"Удельный импульс тяги" в книгах

От тяги к хмельному

Из книги Заговоры сибирской целительницы. Выпуск 37 автора Степанова Наталья Ивановна

От тяги к хмельному Берут завязки, которыми перевязывали ноги покойнику, и опускают их в воду. Воду заговаривают в полночь и дают пьющему человеку. Для лечения женщины ритуал проводят в женские дни (среда, пятница, суббота); для лечения пьющего мужчины – в мужские дни

От тяги к спиртному

Из книги Заговоры сибирской целительницы. Выпуск 31 автора Степанова Наталья Ивановна

От тяги к спиртному Из письма:«Я вылечила своего сына по Вашей книге от пьянства, и он уже три года не пьет. Как-то при разговоре с ним он мне сказал, что когда он в компании или у кого-нибудь за столом на дне рождения или свадьбе, то ему на дух спиртное не нужно, но когда он

От тяги к наркотику

автора Степанова Наталья Ивановна

От тяги к наркотику В старину тоже были любители попить запаренную коноплю и мак. Сушили некоторые виды грибов, смешивали с беленой и постепенно становились зависимыми от наркотиков.Лечили таких наркоманов баней, постом, молитвой и травами.Бабушка знала множество

От тяги к хмелю

Из книги 7000 заговоров сибирской целительницы автора Степанова Наталья Ивановна

От тяги к хмелю Это очень сильный заговор. Читают его в последний день убыльного месяца. Нужно выйти на улицу и, глядя на звезды, говорить:Небо Божие, Божий Престол, а у раба Божия (имя) всегда накрыт стол. Спуститесь, звезды, в его бражную чашу, чтобы ему по хмельному не

Заговор от тяги к вину

Из книги Заговоры сибирской целительницы. Выпуск 34 автора Степанова Наталья Ивановна

Удельный вес

Из книги Универсальный энциклопедический справочник автора Исаева Е. Л.

Удельный вес Килограмм-сила на кубический метр (9,80665 Н/м3)Тонна-сила на кубический метр (9,80665

Удельный вес

БСЭ

Удельный импульс

Из книги Большая Советская Энциклопедия (УД) автора БСЭ

Удельный вес

Из книги Анализы. Полный справочник автора Ингерлейб Михаил Борисович

Удельный вес Удельный вес желчи в порциях А и С составляет обычно 1008–1012, в порции В –

От тяги к наркотикам

Из книги Большая защитная книга здоровья автора Степанова Наталья Ивановна

От тяги к наркотикам В старину тоже были любители попить запаренную коноплю и мак. Сушили некоторые виды грибов, смешивали с беленой и постепенно становились зависимыми от наркотиков.Лечили таких наркоманов баней, постом, молитвой и травами.Бабушка знала множество

Заговор от тяги к вину

Из книги 1777 новых заговоров сибирской целительницы автора Степанова Наталья Ивановна

Заговор от тяги к вину Шел Иисус Христос, нес три свечи, И как этим свечам в аду не гореть, Так и Божьему рабу (имя) О хмельном не скорбеть. Матерь Божья, запрети (такому-то) рабу Чашу с хмелем ко рту Подносить, в руки брать, Помоги ему о хмельном Не думать, не тосковать. Одна

4.2. Проблема тяги

Из книги автора

4.2. Проблема тяги Существует множество проектов колонизации и терраформирования Марса, которые очень любят обсуждать популяризаторы и научные журналисты. Довольно часто на телевизионных экранах можно увидеть фильмы, в которых высадка экспедиции на Марс представляется

Резиновые тяги

Из книги Учебник подводной охоты на задержке дыхания автора Барди Марко

Резиновые тяги Резиновые тяги определяют мощность арбалетного ружья, и, естественно, чтобы мощность была хорошей, нужны хорошие резинки. Но как же определить, являются ли они таковыми?Материал, используемый для производства резиновых трубок - это результат химического

Глава 19 ПРОБЛЕМА ТЯГИ

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Глава 19 ПРОБЛЕМА ТЯГИ Дальние межпланетные экспедиции и проблема тяги Общеизвестно, что на сегодняшний день основой космической экспансии человечества по-прежнему являются ракеты на жидком топливе. Однако имеющиеся в наличии и перспективные ракеты на жидком топливе, к

Конструкция тяги

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Конструкция тяги Тяга между передними и задними ногами изготовлена из прутка с резьбой 3 мм (см. рис. 11.10). В исходной конструкции длина тяги составляет 132 мм от центра до центра. Тяга вставляется в отверстия на передней и задней ноге робота и может быть закреплена с помощью



Документы