Коррозионная стойкость строительных материалов. Коррозийная стойкость металлов

Cтраница 4


Коррозионную стойкость металлов при скорости коррозии 0 5 мм / год и выше оценивают по группам стойкости, а при скорости коррозии ниже 0 5 мм / год - по баллам.  


Однако коррозионная стойкость металлов существенно зависит от их термической обработки. Наиболее приемлемой температурой термообработки стали, содержащей 17 % хрома (марка XI7) является 760 - 7.0 С.  

Мерой коррозионной стойкости металлов и сплавов служит скорость коррозии в данной среде при данных условиях.  

Оценка коррозионной стойкости металлов при скорости коррозии 0 5 мм / год и выше производится по группам стойкости - а при скорости коррозии ниже 0 5 мм / год - по баллам.  

Оценка коррозионной стойкости металлов как по потере веса, так и по проницаемости применима только для равномерной коррозии. При неравномерной и местной коррозии эти показатели характеризуют только усредненную скорость коррозии, в то время как на отдельных участках скорость отличается от этого значения. Особенно трудно оценить коррозионную стойкость металлов при меж-кристаллитной коррозии. В этих случаях прибегают к определению механической прочности образцов до и после коррозии.  

Критерием коррозионной стойкости металла при атмосферных испытаниях наиболее часто служит изменение внешнего вида образцов, изменение их веса и механических характеристик. При оценке коррозионной стойкости металла или покрытия по изменению внешнего вида сравнение ведут по отношению к исходному состоянию поверхности, поэтому состояние последней перед испытанием должно быть тщательно зафиксировано. Для этого образцы осматривают невооруженным глазом, а некоторые участки - через бинокулярную лупу. При этом особое внимание обращают на дефекты: а) на основном металле (раковины, глубокие царапины, вмятины, окалина, ее состояние и пр. Результаты наблюдений записывают или фотографируют. Для облегчения наблюдений и точного фиксирования их результатов на осматриваемый образец накладывают проволочную сетку или прозрачную бумагу с нанесенной тушью сеткой. Первоначально за образцами наблюдают ежедневно для установления первых очагов коррозии. В дальнейшем осмотр повторяют через 1, 2, 3, 6, 9, 12, 24 и 36 мес. При наблюдении обращают внимание на следующие изменения: 1) потускнение металла или покрытия и изменение цвета; 2) образование продуктов коррозии металла или покрытия, цвет продуктов коррозии, их распределение на поверхности, прочность сцепления с металлом; 3) характер и размеры очагов коррозии основного, защищаемого металла. Для однообразия в описании производимых наблюдений рекомендуется употреблять одинаковые термины: потускнение, пленка и ржавчина. Термин потускнение применяют, когда слой продуктов очень тонкий, когда происходит только легкое изменение цвета поверхности образца, термин пленка употребляется для характеристики более толстых слоев продуктов коррозии и термин ржавчина - для толстых, легко заметных слоев продуктов коррозии. Характер слоев продуктов коррозии предлагается описывать терминами: очень гладкие, гладкие, средние, грубые, очень грубые, плотные и рыхлые.  

Мерой коррозионной стойкости металла служила величина максимального объема водорода, выделившегося за 3 суток испытаний с поверхности 1 дм2 при 20 2 С.  


Повышение коррозионной стойкости металла с увеличением концентрации такого сильно агрессивного электролита, как соляная кислота, вероятно, можно объяснить хемосорбционным взаимодействием компонентов пр с элементами сплава; видимо, большое значение имеют находящиеся в пр ненасыщенные соединения.  

Оценка коррозионной стойкости металлов при скорости коррозии 0 5 мм / год и выше производится по группам стойкости, а.  


Повышение коррозионной стойкости металла с увеличением концентрации такого сильно агрессивного электролита, как соляная кислота, вероятно, можно объяснить хемосорбционным взаимодействием компонентов пр с элементами сплава; видимо, большое значение имеют находящиеся Тв пр ненасыщенные соединения.  

Скорость коррозионного разрушения металла характеризуется весовым или глубинным показателем. Первый выражает изменение веса образца за счет коррозии, отнесенное к единице поверхности металла и единице времени. Второй -- показывает глубину коррозионного разрушения металлического образца, выраженную в линейных единицах и отнесенную к единице времени.

Пользование только одним из этих показателей зачастую не дает правильного представления об опасности коррозии для сооружения. Так, например, при развитии местной коррозии весовой показатель может быть незначительным, а сооружение может находиться в аварийном состоянии; наоборот, при равномерной коррозии общие коррозионные потери могут оказаться большими, а в то же время опасность аварии сооружения от коррозии при медленном ее развитии вглубь и достаточной толщине изделия будет меньшей. Поэтому для более полного представления о скорости и характере коррозии следует пользоваться обоими показателями.

Опасность разрушения сооружения в почве тем больше, чем менее равномерно распределена коррозия по поверхности конструкции. В случае развития местной коррозии наиболее опасными будут те из коррозионных поражений, которые имеют наименьшую площадь, так как они быстрее других развиваются вглубь стенки конструкции вследствие сосредоточения анодного растворения металла на ограниченной площади.

Характер, скорость коррозии и особенности ее распределения по поверхности сооружения определяются как свойствами самого металла, так и внешними условиями. В зависимости от комбинации внешних условий количественные показатели коррозии для одного и того же металла могут изменяться в значительных пределах.

Поэтому реальная коррозионная стойкость того или иного металла является относительной. Она не может быть выражена абсолютной мерой без всестороннего учета условий, в которых развивается процесс коррозии. Следовательно, в идеальном случае определение объема и вида защитных мероприятий должно базироваться на тщательном изучении и анализе всей совокупности внешних и внутренних факторов коррозии.

Коррозионная стойкость -- способность материалов сопротивляться коррозии, определяющаяся скоростью коррозии в данных условиях. Для оценки скорости коррозии используются как качественные, так и количественные характеристики. Изменение внешнего вида поверхности металла, изменение его микроструктуры являются примерами качественной оценки скорости коррозии.

Для количественной оценки можно использовать:

  • · время, истекшее до появления первого коррозионного очага;
  • · число коррозионных очагов, образовавшихся за определённый промежуток времени;
  • · уменьшение толщины материала в единицу времени;
  • · изменение массы металла на единице поверхности в единицу времени;
  • · объём газа, выделившегося (или поглощённого) в ходе коррозии единицы поверхности за единицу времени;
  • · плотность тока, соответствующая скорости данного коррозионного процесса;
  • · изменение какого-либо свойства за определённое время коррозии (например, и др. электросопротивления, отражательной способности материала, механических свойств).

Разные материалы имеют различную коррозионную стойкость, для повышения которой используются специальные методы. Так, повышение коррозионной стойкости возможно при помощи легирования (например, нержавеющие стали), нанесением защитных покрытий (хромирование, никелирование, окраска изделий), пассивацией

Коррозионная стойкость — способность материалов сопротивляться коррозии, определяющаяся скоростью коррозии в данных условиях.

Для оценки скорости коррозии используются как качественные, так и количественные характеристики. Изменение внешнего вида поверхности металла, изменение его микроструктуры являются примерами качественной оценки скорости коррозии.

Для количественной оценки можно использовать:

  • число коррозионных очагов, образовавшихся за определённый промежуток времени;
  • время, истекшее до появления первого коррозионного очага;
  • изменение массы металла на единице поверхности в единицу времени;
  • уменьшение толщины материала в единицу времени;
  • плотность тока, соответствующая скорости данного коррозионного процесса;
  • объём газа, выделившегося (или поглощённого) в ходе коррозии единицы поверхности за единицу времени;
  • изменение какого-либо свойства за определённое время коррозии (например, электросопротивления, отражательной способности материала, механических свойств)

Разные материалы имеют различную коррозионную стойкость, для повышения которой используются специальные методы. Повышение коррозионной стойкости возможно при помощи легирования (например, нержавеющие стали), нанесением защитных покрытий (хромирование, никелирование, алитирование, цинкование, окраска изделий), пассивацией и др. Устойчивость материалов к воздействию коррозии, характерной для морских условий, исследуется в камерах солевого тумана.

Наиболее лёгкой формой коррозионного воздействия является изменение цвета и потеря блеска, что в принципе мало заметно издалека. При помощи санации поверхности обычно можно вернуть стали прежний привлекательный вид.

Оспенная коррозия

Оспенная коррозия (питтинговая коррозия) — это вид коррозионного воздействия, вызываемого хлоридами.

Обычно сначала появляются маленькие точки тёмно-рыжего цвета и лишь в очень сложных случаях они могут разрастаться до такой степени, что коррозия переходит в новую стадию, сплошную поверхностную коррозию. Риск возникновения коррозии усиливается, если на поверхности после сваривания остаются инородные материалы (лак и т.п.), если на поверхность попадают частицы другого корродировавшего металла, если после термообработки не был удалён цвет побежалости.

Коррозионное растрескивание

Коррозионное растрескивание — это разрушение металла вследствие возникновения и развития трещин при одновременном воздействии растягивающих напряжений и коррозионной среды. Оно характеризуется почти полным отсутствием пластической деформации металла.

Такой вид коррозии появляется в средах с повышенным содержанием хлоридов, например, в бассейнах.

Щелевая коррозия

Щелевая коррозия — возникает в местах стыка, обусловленных конструктивными или эксплуатационными требованиями.

На степень коррозионного воздействия будет оказывать влияние геометрия стыка и тип соприкасающихся материалов. Наиболее опасны узкие стыки с малыми зазорами и соединение стали с пластиками. Если же избежать стыков не возможно, то рекомендуем использовать нержавеющие стали, легированные молибденом.

Межкристаллитная коррозия

Межкристаллитная коррозия — этот вид коррозии возникает в настоящее время на сталях после сенсибилизации в сочетании с использованием в кислых средах.

Во время сенсибилизации выделяются карбиды хрома, которые накапливаются по границам зёрен. Соответственно возникают области с пониженным содержанием хрома и более подверженные коррозии. Подобное происходит, например, во время сваривания в зоне теплового воздействия.

Все аустенитные стали обладают стойкостью к межкристаллитной коррозии. Их можно подвергать свариванию (лист до 6 мм, пруток до 40 мм) без риска возникновения МКК.

Биметаллическая или гальваническая коррозия

Биметаллическая коррозия — возникает при работе биметаллического коррозионного элемента, т.е. гальванического элемента, в котором электроды состоят из разных материалов.

Очень часто необходимо использовать неоднородные материалы, чьё сопряжение при определённых условиях может приводить к коррозии. При сопряжении двух металлов биметаллическая коррозия имеет гальваническое происхождение. При этом виде коррозии страдает менее легированный металл, который в обычных условиях, не находясь в контакте с более легированным металлом, не подвержен коррозии. Следствием биметаллической коррозии является как минимум изменение цвета и, например, потеря герметичности трубопроводов или отказ крепежа. В конечном итоге указанные проблемы могут приводить к резкому сокращению срока службы строения и необходимости преждевременного капитального ремонта. В случае с нержавеющими сталями биметаллической коррозии подвергается сопрягаемый с ними менее легированный металл.

1. Основные понятия, термины и определения

Коррозионная стойкость - способность материала противостоять действию агрессивных сред (коррозии).

Коррозия (дт лат, corrosio - разъедание) - разрушение материалов вследствие химического или электрохимического взаимодействия со средой.

Строительные материалы, и в первую очередь их поверхности, в течение длительной эксплуатации разрушаются в основном в результате двух видов воздействия: коррозионного, связанного с влиянием на материал внешней, агрессивной среды и эрозионного, вызываемого механическим воздействием.

Эрозионное разрушение интенсивно протекает при относительно быст­
ром перемещении среды или материала. Особенно большой величины эрозия достигает при контакте материала с расплавами металлов и шлаков, а также с газообразными окислителями и пр.

Явления коррозии и эрозии часто сопутствуют друг другу, и поэтому их не всегда удается разделить. В строительном материаловедении эти явления рассматривают раздельно. Эрозионные процессы рассматриваются при изуче­нии эксплуатационных свойств покрытий полов, дорожных покрытии и пр.

2. Виды коррозии строительных материалов

Коррозия строительных материалов различается, по виду коррозионной среды, характеру разрушения и процессам, происходящим в них:

Коррозионная среда:

Газовая

Инертный газ;

Химически активный газ;

Жидкостная:

Кислотная;

Солевая;

Щелочная;

Морская;

в расплаве:

металлов;

силикатов;

2) характер разрушения:

Равномерное;

Неравномерное:

Избирательное;

Поверхностное;

Растрескивание;

Местное;

Межкристаллитное;

3) виды воздействий (процессов);

Химические;

Электрохимические;

Биологические;

Органогенные.

Виды коррозионной среды:

Газовая коррозия представляет собой коррозию в газовой среде при пол­ном отсутствии конденсации влаги на поверхности материала. Этому виду кор­розии подвержены материалы, работающие в условиях высоких температур в среде осушенного газа (керамика).

Газовая коррозия относится к химическим процессам разрушения. Скорость ее зависит; от природы материала, его структуры и свойств новообразований на его поверхности.

Жидкостная коррозия природных и искусственных каменных материа­лов, происходящая под действием растворов электролитов и неэлектролитов, а также различных расплавов, носит в основном химический характер, хотя в за­висимости от вида и свойств жидкости отличается рядом особенностей.

Важнейшей особенностью жидкостей является наличие в них сил межмолекулярного взаимодействия. Этим обусловлены два свойства жидкого состояния: молекулярное давление и связанное с ним поверхностное натяжение.


Поверхностное натяжение жидкости оказывает большое влияние на интенсивность разрушения материала, которое определяется также смачивающи­ми свойствами жидкости.

Характер разрушения:

Равномерная коррозия возникает в результате действия агрессивной среды при достаточной толщине изделия и равномерном распределении напряжений сжатия, изгиба или растяжения. Коррозия этого вида в отличие от других в значительно меньшей степени влияет на прочностные свойства материала.

Неравномерная, или местная коррозия (пятна, язвы, разводы) происходит при различной концентрации агрессивной среды на отдельных участках или неоднородности самого материала (его состава и структуры). Так в результате неравномерного распределения кристаллической и стекловидной фаз в керамическом материале коррозионное разрушение на его отдельных участках протекает с разной скоростью. При этом в стекловидной фазе процесс развивается значительно быстрее, чем в кристаллической. Наличие в материале неод­нородной пористости также способствует образованию в материале неравно­мерной коррозии.

Избирательная коррозия характерна для материалов, в которых один из компонентов при формировании структуры образует легко растворимые соединения. В период эксплуатации эти соединения могут переходить в раствор, об­разуя на поверхности материала так называемые «высолы».

Межкристаллитная коррозия возникает в результате разрушения мате­риала по границам зерен и быстро распространяется вглубь материала, резко снижая его свойства. Этот вид коррозии присущ некоторым обжиговым мате­риалам, при спекании которых образуются новые фазы, твердые растворы и пр. и, следовательно, границы раздела.

Коррозионное воздействие в общем случае может иметь два принципи­ально различных механизма: химическое взаимодействие и растворение.

Химическое взаимодействие сводится к реакции между средой и материалом с образованием новых соединений. При наличии в агрессивных средах примесей, а в материале - добавок химические реакции могут протекать между всеми элементами взаимодействия.

Поскольку каменные материалы являются диэлектриками и взаимодейст­вие их с агрессивной средой не сопровождается возникновением электрических токов, процесс разрушения материалов называют химической коррозией.

При воздействии агрессивных сред на металлы происходит электрохими­ческий процесс передачи электронов из слоя металла с более низким электри­ческим потенциалом слою с более высоким потенциалом и восстановление электроположительных ионов с последующим разрушением поверхностного слоя. Такой процесс разрушения принято называть электрохимической коррозией.

Биологическая коррозия - разрушение материала под непосредственным воздействием растительных и животных организмов, а также микроорганизмов.

1. Высшие растительные организмы (корневая система, стебли, листья, семена и пр.) в процессе жизнедеятельности продуцируют различные виды ве­ществ, большинство из которых по отношению к строительным материалам яв­ляются агрессивными.

2.Живыеорганизмы вызывают биоповреждения материалов как непо­средственно своим механическим воздействием (грызуны, птицы и пр.), так и продуктами своей жизнедеятельности.

3. Низшие растительные организмы и микроорганизмы (водоросли, лишай­ники, мхи, грибки, бактерии и пр.) разрушают поверхностные слои бетонов и создают условия для гниения конструкций из древесины.

Коррозию, возникающую в результате воздействия на строительные ма­териалы продуктов технологической переработки органических веществ как биогенного (фрукты, овощи, растительные масла, кровь, соки, жиры и пр.), так и небиогенного происхождения (нефть, уголь, сланцы, известняки-ракушечники, выхлопные газы, копоть и пр.), принято органогенной коррозией.

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Таблица. Коррозионная стойкость металлов и сплавов при нормальных условиях

Таблица. Коррозионная стойкость металлов и сплавов при нормальных условиях

Данная таблица коррозионной стойкости предназначена для составления общего представления о том, как различные металлы и сплавы реагируют с определенными средами. Рекомендации не являются абсолютными, поскольку концентрация среды, ее температура, давление и другие параметры могут влиять на применимость конкретного металла и сплава. На выбор металла или сплава также могут оказывать влияние экономические соображения.

КОДЫ : А — обычно не корродирует, В — коррозия от минимальной до незначительной, С — не подходит

Таблица. Коррозионная стойкость металлов и сплавов при нормальных условиях
Среда Алюминий Латунь Чугун и
углеродистая
сталь
Нержавеющая сталь Alloy Титан Цирконий
416 и 440С 17-4 304, соотв. 08Х18Н10 316, соотв. 03Х17Н142 Дуплексная 254 SMO 20 400 C276 B2 6
1 Ацетатальдегид A A C A A A A A A A A A A A A A
2 Ацетатная кислота, без воздуха C C C C C C A A A A A A A A A A
3 Ацетатная кислота, насыщенная воздухом C C C C B B A A A A C A A A A A
4 Ацетон B A A A A A A A A A A A A A A A
5 Ацетилен A A A A A A A A A A A A A A A A
6 Спирты A A A A A A A A A A A A A A A A
7 Сульфат алюминия C C C C B A A A A A B A A A A A
8 Аммиак A C A A A A A A A A A A A A A A
9 Нашатырь C C C C C C B A A A B A A B A A
10 Аммиак едкий A C A A A A A A A A C A A A A B
11 Аммиачная селитра B C B B A A A A A A C A A A C A
12 Фосфат аммония B B C B B A A A A A B A A A A A
13 Сульфат аммония C C C C B B A A A A A A A A A A
14 Сульфит аммония C C C C A A A A A A C A A A A A
15 Анилин C C C C A A A A A A B A A A A A
16 Асфальт, битум A A A A A A A A A A A A A A A A
17 Пиво A A B B A A A A A A A A A A A A
18 Бензол A A A A A A A A A A A A A A A A
19 Бензойная кислота A A C C A A A A A A A A A A A A
20 Борная кислота C B C C A A A A A A B A A A A A
21 Бром сухой C C C C B B B A A A A A A A C C
22 Бром влажный C C C C C C C C C C A A A C C C
23 Бутан A A A A A A A A A A A A A A A A
24 Хлорид кальция C C B C C B B A A A A A A A A A
25 Гипохлорит кальция C C C C C C C A A A C A B B A A
26 Диоксид углерода сухой A A A A A A A A A A A A A A A A
27 Диоксид углерода влажный A B C C A A A A A A B A A A A A
28 Дисульфид углерода C C A B B A A A A A A A A A A A
29 Угольная кислота A B C C A A A A A A A A A A A A
30 Тетрахлорид углерода A A B B A A A A A A A A A A A A
31 Хлор сухой C C A C B B B A A A A A A A C A
32 Хлор влажный C C C C C C C C C C B B B C A A
33 Хромовая кислота C C C C C C C B A C C A B C A A
34 Лимонная кислота B C C C B B A A A A A A A A A A
35 Коксовая кислота C B A A A A A A A A B A A A A A
36 Сульфат меди C C C C C C B A A A C A A C A A
37 Хлопковое масло A A A A A A A A A A A A A A A A
38 Креозот C C A A A A A A A A A A A A A A
39 Даутерм A A A A A A A A A A A A A A A A
40 Этан A A A A A A A A A A A A A A A A
41 Эфир A A B A A A A A A A A A A A A A
42 Этилхлорид C B C C B B B A A A A A A A A A
43 Этилен A A A A A A A A A A A A A A A A
44 Этиленгликоль A A A A A A A A A A A A A A A A
45 Хлорид железа C C C C C C C C B C C A C C A A
46 Фтор сухой B B A C B B B A A A A A A A C C
47 Фтор влажный C C C C C C C C C C B B B C C C
48 Формальдегид A A B A A A A A A A A A A A A A
49 Муравьиная кислота B C C C C C B A A A C A B B C A
50 Фреон влажный C C B C B B A A A A A A A A A A
51 Фреон сухой A A B A A A A A A A A A A A A A
52 Фурфурал A A A B A A A A A A A A A A A A
53 Бензин стабильный A A A A A A A A A A A A A A A A
54 Глюкоза A A A A A A A C A A A A A A A A
55 Соляная кислота, насыщенная воздухом C C C C C C C C C C C B A C С A
56 Соляная кислота, без воздуха C C C C C C C C C C C B A C С A
57 Плавиковая кислота, насыщенная воздухом C C C C C C C C C C B B B C С C
58 Плавиковая кислота, без воздуха C C C C C C C C C C A B B C С C
59 Водород A A A C B A A A A A A A A A С A
60 Перекись водорода A C C C B A A A A A C A C A A A
61 Сероводород C C C C C A A A A A A A A A A A
62 Йод C C C C C A A A A A C A A A С B
63 Гидроксид магния B B A A A A A A A A A A A A A A
64 Ртуть C C A A A A A A A A B A A A С A
65 Метанол A A A A A A A A A A A A A A A A
66 Метилэтилгликоль A A A A A A A A A A A A A A A A
67 Молоко A A C A A A A A A A A A A A A A
68 Природный газ A A A A A A A A A A A A A A A A
69 Азотная кислота C C C C A A A A A A C B C С A A
70 Олеиновая кислота C C C B B B A A A A A A A A A A
71 Щавелевая кислота C C C C B B B A A A B A A B С A
72 Кислород C A C C B B B B B B A B B B С C
73 Минеральное масло A A A A A A A A A A A A A A A
74 Фосфорная кислота, насыщенная воздухом C C C C B A A A A A C A A A С A
75 Фосфорная кислота, без воздуха C C C C B B B A A A B A A B С A
76 Пикриновая кислота C C C C B B A A A A C A A A A A
77 Углекислый калий/ карбонат калия C C B B A A A A A A A A A A A A
78 Хлорид калия C C B C C B B A A A A A A A A A
79 Гидроксид калия C C B B A A A A A A A A A A A A
80 Пропан A A A A A A A A A A A A A A A A
81 Канифоль, смола A A B A A A A A A A A A A A A A
82 Нитрат серебра C C C C B A A A A A C A A A A A
83 Ацетат натрия A A A A A A A A A A A A A A A A
84 Карбонат натрия C C A B A A A A A A A A A A A A
85 Хлорид натрия С A C C B B B A A A A A A A A A
86 Декагидрат хромата натрия A A A A A A A A A A A A A A A A
87 Гидроксид натрия С С A B B B A A A A A A A A A A
88 Гипохлорит натрия C C C C C C C C C C C A B C A A
89 Тиосульфат натрия C C C C B B A A A A A A A A A A
90 Хлорид олова C C C C C C B A A A C A A B A A
91 Водяной пар A A A A A A A A A A A A A A A A
92 Стеариновая (октадекановая) кислота C B B B B A A A A A A A A B A A
93 Сера A B A A A A A A A A A A A A A A
94 Диоксид серы сухой C C C C C C B A A A C A A B A A
95 Триоксид серы сухой C C C C C C B A A A B A A B A A
96 Серная кислота, насыщенная воздухом C C C C C C C A A A C A C B С A
97 Серная кислота, без воздуха C C C C C C C A A A B A A B С A
98 Сернистая кислота C C C C C B B A A A C A A B A A
99 Деготь A A A A A A A A A A A A A A A A
100 Трихлорэтилен B B B B B B A A A A A A A A A A
101 Скипидар A A B A A A A A A A A A A A A A
102 Уксус B B C C A A A A A A A A A A A A
103 Вода химочищенная A A A A A A A A A A A A A C A A
104 Вода дистиллированная A A C C A A A A A A A A A A A A
105 Вода морская — в сухпутной
РФ малоизвестно, но
исключительно малоприятная среда,
применимость — «относительная»
С A C C C C B A A A A A A A A A
106 Виски, водка, вино A A C C A A A A A A A A A A A A
107 Хлорид цинка C C C C C C C B B B A A A B A A
108 Сульфат цинка С С С С А А А А А А А А А А А А

Оценка статьи:



Кадры