Изобретения как способы решения технических противоречий. Шпоры по проектированию роботов и РТС - файл Шпоры.doc. Эвристическая ценность противоречий

ПЯТЬ ТЕХНИЧЕСКИХ ПРОТИВОРЕЧИЙ АВТОМОБИЛЕЙ

E-mail: *****@***ru

Инженер, ОО ТРИЗ-Чебоксары, РОССИЯ

Чувашский государственный университет, РОССИЯ

Тел. 89063842457, e-mail: *****@***ru

Аннотация. В статье рассмотрены 5 видов противоречий использования личного автотранспорта, связанных с: личным и общественным удобством, аварийностью на дорогах, большой зависимостью от погоды и состояния покрытия, невысоким временем использования (личный транспорт больше стоит, чем движется), выхлопом не только углекислого газа, но и окисла . Рассмотрены подходы к разрешениям этих противоречий с позиций алгоритма решения изобретательских задач АРИЗ, в частности системы приёмов разрешения технических и физических противоречий. Предложены вероятные решения проблем, вызванных указанными противоречиями.

Ключевые слова: технические противоречия, автомобили, приёмы разрешения противоречий, АРИЗ –элементы методик теории решения изобретательских задач ТРИЗ, безопасность личного автомобиля.

THE TECHNICAL CONTRUDICTIONS AND THE AUTOMOBILE

A. R. Andreev, ChuvSU, Cheboksary, RUSSIA

phone: 8917650 3527, e-mail: *****@***ru

E. D. Andreev, Engineer, TRIZ-Cheboksary, RUSSIA

V. A. Mikhailov, ChuvSU, Cheboksary, RUSSIA

Phone: 8906 384 2457, e-mail: *****@***ru

Abstract. In article 5 types of contradictions of use of personal motor transport are considered: personal convenience, comfort inside and accident rate on highways, big dependence on weather and condition of highways, an individual transport costs more, than moves, secretion of nitrogen oxide. Approaches to permissions of these contradictions from positions of algorithm of the solution of inventive problems of ARIZ, in particular system of receptions of permission of technical and physical contradictions are considered. The probable solution of these of problems.

Keywords: technical contradictions, automobiles, methods of resolution of conflicts, ARIZ – elements of techniques of the theory of the solution of inventive problems (TRIZ), safety of the privately owned vehicle.

1. СОСТОЯНИЕ РАЗВИТИЯ АВТОТРАНСПОРТА

Уровни комфорта и безопасности водителя и пассажиров непрерывно улучшают, скорости перевозки возможны 200 км/час, но даже на хорошем автобане, открытом атмосферным осадкам (снегу, льду, воде, туману), поездка становится опасной и уже уносит большое число человеческих жизней. Резкое возрастание сопротивления воздушной среды, возможности путепроводного полотна, экологические проблемы – ограничивают быстроту движения автомобилей. Из параметров транспорта много внимания уделяется его энергопотреблению. Существующие параметры транспорта и путей достигли предельных величин. С точки зрения ТРИЗ , они вышли на участок насыщения известной S-образной кривой изменения параметров во времени, когда : «вес, объём и площадь (машины) и объекта (с которым она взаимодействует) … должны почти совпадать». И энергопотребление на единицу параметра достигает минимально-возможного значения. Какое-то время у системы есть, чтобы оставаться на достигнутом уровне параметров. Потом в соответствии со стремлением всех систем к идеальности они должны исчезнуть: идеален тот «…технический объект…, которого нет, а функция его выполняется»:

– во-первых, выявляют противоречия имеющегося средства, через разрешение которых и происходит развитие;

– во-вторых, новая система должна сначала появиться в проекте, затем в макете, пройти испытания, потом претвориться в массовых сериях;

– в-третьих, нужно время, чтобы общество оценило новую систему, её достоинства и, затем, ощутило потребность в ней;

– в-четвёртых, нелегко запустить систему в производство и «внедрить» изделие в жизнь потому что нужно изменять также смежные отрасли промышленности.

Технические противоречия (ТП), подлежащие устранению (разрешению):

ТП-1: система для перемещения на поверхности земли подвержена воздействию атмосферных осадков, но она не должна быть подвержена им для безопасности перевозок.

ТП-2: система для перемещения должна быть личной (т. е. под рукой в любое время), но она должна быть общественной, чтобы не простаивать и не занимать дорогую городскую площадь, ожидая хозяина, и не затруднять его обслуживанием (быть как такси, но доступнее). Возрастает в городах число автомобилей и для них всё труднее находить места для парковки.

ТП-3: система для перемещения на земле подразумевает возможность столкновений, но она должна исключать возможность столкновения в принципе, чтобы гарантировать жизни людей.

Кроме разрешения этих трёх ТП и сохранения высоких значений скорости перемещения и соотношения «m груза/m системы» при минимальном потреблении энергии (высоком КПД) – предполагаемая система должна разрешить ещё и такие противоречия.

ТП-4: объект научно-технического прогресса при своём развитии не может не влиять на природную среду вредно, но он должен развиваться, сохраняя её.

ТП-5: для увеличения КПД двигателя ДВС возрастает степень сжатия топливной смеси в цилиндрах, при этом возрастает температура горения с 900°С до более 1200°С, но при таких температурах уже окисляется азот воздуха до окисла азота NO, присутствие NO в выхлопе недопустимо.

Последние два противоречия имеют следствием нарушения глобального закон о чистоте энергопотребления и требования ко всем искусственным объектам: использовать для реализации своей функции такие источники энергии, которые не загрязняют и не перегревают окружающую среду. Нашей эпохе не соответствуют даже электромобили – только до первого снегопада и гололёда, потому что «газовать» на заносах означает быстрый разряд аккумулятора. Надо согласиться с : «На смену автомобилю придет не электромобиль, а система, которая будет включать автомобиль (или эквивалентное ему действие) в качестве одной из подсистем». Электроэнергии тоже не является экологически чистой, так как и ТЭЦ, и ГЭС загрязняют природу. К закону о чистоте источников энергии добавляется ещё и требование: при реализации функции объекта запрещаются какие-либо формы противостояния природе. Это будет акт признания человеком превосходства природы. Руководствуясь им, в дальнейшем можно избежать многих недоразумений при развитии в сторону приближения к идеальности. Неужели и в будущем мы будем закапывать огромные средства в дорожное полотно, которое всё равно в нашем климате разрушается, требуя снова и снова больших затрат на ремонт? Без развития техники природная среда осталась бы невредимой. Но «… потенциально природа обречена; она неизбежно будет вытеснена стремительно растущей техникой …» . Если техника вдруг перестанет быть «стремительно растущей», как она это делает в настоящее время – то у природы появляется шанс на сохранение, а у ТП-4 – вариант разрешения. Не технический прогресс губит естественный мир, а производство сверх целесообразности.

2. ПРИМЕНЕНИЕ ЭЛЕМЕНТОВ ТРИЗ К РАЗРЕШЕНИЮ ТП-1 -4

Шаг 1. Целями решения в развитии личного транспорта являются гарантирование безопасности движения с высокой скоростью при практически любой погоде и с минимальным воздействием на окружающую среду. (Зачем это нужно? Сейчас имеет место высокая аварийность личных автомобилей из-за высокой вероятности их столкновений, большое влияние на аварийность оказывает состояние поверхности дороги и погоды, другие причины, независимые от данного водителя. Что этому содействует? Плотный поток транспорта и высокая скорость движения.)

Шаг 2. ИКР - Идеальный конечный результат: САМО СОБОЙ достигается полное исключение столкновений автомобилей и в лоб, и сзади и влияние изменений погоды на движение автомобилей при постоянном движении транспорта за исключением остановок на посадку и высадку пассажиров с практически круглосуточной его доступностью.

Шаг 3. Выбор направлений поиска:

3.1 – что нужно улучшить: безопасность движения автотранспорта в любую погоду;

3.2 – что нужно устранить: столкновения автомобилей и в лоб, и сзади;

3.3 – какой элемент должен быть, чтобы обеспечить пользу, и не должен быть, чтобы устранить вред: личный автомобиль обеспечивает удобство и скорость передвижения, но он больше стоит, чем двигается, занимает много места на улицах города и при движении часто попадает в дорожно-транспортные происшествия;

3.4 – какое действие должно выполняться, чтобы была польза, и не должно выполняться, чтобы не возникал вред: движение автомобиля по дорогам обеспечивает быстрое передвижение, но оно при плохой погоде приводит к столкновениям автомобилей;

3.5–какое условие должно иметь одно значение, чтобы обеспечить пользу, но должно иметь другое значение, чтобы не возникал вред: для быстроты передвижения скорость автомобиля должна быть высокой, для улучшения безопасности движения скорость его должна быть малой (в пределе автомобиль должен всегда стоять).

Выбираем поиск путей как «устранить столкновения автомобилей при движении по автодороге в плохую погоду с большой скоростью и в лоб, и сзади».

Шаг 4. Поиск идей с помощью 30 абстрактных изобретательских приёмов :

4.1 – рассмотрим раздел «Ресурсы»: энергия, вещества, информация, производное (от энергии, вещества или информации), концентрация чего-либо: пока большая энергия столкновения поглощается повреждением корпуса автомобиля (это уменьшает вред для пассажиров – имеется много патентов в этом направлении как и по другим защитным средствам для пассажиров – это направление поглощения вредной энергии); изменяют конструкции вещества-корпуса для решения этой задачи – имеется много патентов; используют информацию по «сопротивлению материалов», на широких шоссе применяют разделение полос встречного движения, чтобы исключить столкновения «в лоб», такое же разделение потоков иногда имеет место в тоннелях;

4.2 – раздел «Время» как ресурс разрешения противоречий: заранее, после, в паузах, ускорить или замедлить, добавим в «одно и то же время»: заранее разрабатывают корпус и бампер, улучшающие энерго-поглощение при столкновениях; после разрезают корпус с слабых местах для извлечения пассажиров; паузы – остановки движения используют для отдыха водителя; ускорить – редко удаётся избежать столкновений путём ускорения движения; замедлить – при ухудшении погоды рекомендуют замедлить движение; в одно и то же время – требуется по задаче и быстрое, и безопасное движение в любых условиях;

4.3 – раздел «Пространство» как ресурс разрешения противоречий: другое измерение – на некоторых мостах встречное движение производят на разных уровнях-этажах; асимметрия – бывает, что в разных направлениях движения ширина полос разная; матрёшка – например, труба в трубе (такие примеры возможны втрубопроводном транспорте?); вынесение – разделение движения на особо опасных участках дорог; локализация – местное ограничение скорости движения, видео контроль движения;

4.4 – раздел «Структура»: исключение – здесь важно в принципе исключить возможности любых столкновений: это возможно при движении в трубе, тогда разные направления обеспечиваются в разных трубах – исключаются лобовые столкновения; если же движение средства-капсулы обеспечивается давлением воздуха, то для двух соседних капсул исключено и столкновение сзади, так как при более быстром движении задней капсулы между двумя капсулами повысится давление воздухаи задняя капсула плавно САМА затормозится (вплоть до остановки на достаточном расстоянии от передней капсулы); дробление – переход источника энергии от ДВС к давлению воздуха означает «раздробление» источника энергии до молекул; объединение – труба-дорога и капсула объединяются в одну систему, обеспечивающую безопасное передвижение капсул с пассажирами в почти любую погоду с достаточно большими и почти постоянными скоростями без любых столкновений капсул с пассажирами; в такой объединенной системе изменяются источник энергии, вводится и объединенная система управления движением АСУТП пневмотранспорта, т. к. внутри капсулы смогут быть только две кнопки: станция назначения и старт – всё движение может управляться только централизовано и автоматизировано – под контролем оператора движения на АСУТП; посредник – источником и регулятором движения будет давление воздуха, подаваемого в трубу системой компрессоров (например, расположенных вдоль трубы через 5-10 км); копия – вместо пульта управления в капсулах будут мониторы, отображающие место и параметры её движения; как видно, по приёмам-подсказкам раздела «Структура» намечены контуры идеи пассажирской , которая пока практически не применяется в этих целях (известны локальные пневмо-системы перемещения грузов); по приёмам «вынесения» и «локализации» из раздела «4.4 - Пространство» в предлагаемой пассажирской пневмо-транспортной системе (ППТС) источник энергии, требуемой системе, вынесен из движущейся капсулы в Надсистему ППТС, туда же вынесены и устройства управления движением капсулы;

4.5 – раздел «Условия и Параметры» включает приёмы разрешения противоречий: частично –капсула представляет собой только облегчённый корпус автомобиля; избыточно – взамен усложнена автодорога;согласовано – все подсистемы ППТС должны работать согласовано; динамично и управляемо – АСУТП динамично отслеживает и задаёт режимы всех подсистем ППТС; – все предполагаемые неполадки работы системы и каждой капсулы в пути, по возможности предусмотрены в программах АСУ и контролируются оператором на центральной станции управления ППТС; изоляция – трубы практически полностью изолируют движущиеся капсулы от подавляющего большинства неблагоприятных погодных явлений; противодействие – чтобы у пассажиров не возникала клаустрофобия, капсулы и верхняя половина трубы будут прозрачными (сделаны из упрочнённого полимера или композита); одноразовость – каждым конкретным пассажиром капсула используется только на время поездки, после его высадки в неё сядет для своего маршрута поездки другой пассажир; инверсия – в системах АСУТП и ППТС следует предусмотреть на станциях накопления капсул, которые часто используются пассажирами для высадки, переустановку капсул в трубу противоположного направления движения.

Шаг 5. Концепция: из сочетания подсказок всех разделов и более 15 подсказок-приёмов (более всего подсказок выбранов разделе4 «Структура», остальные 10-12 приёмов подкрепляли, уточняли и расширяли концепцию технического решения). Все вышерассмотренные идеи позволили представить в ФИПС заявку на патент со следующей формулой изобретения:

1. Транспортная система (ТрС), включающая корпус-салон средства перемещения, расположенный в трубопроводе и снабжённый сиденьями и дверями для пассажиров, отличающаяся тем, что содержит центр автоматического управления движением, через канал связи подключенный к компьютерам реверсивных воздушных компрессорных станций, которые последовательно по длине маршрута посредством своих стыковочных узлов и их шторок соединены с полостью трубопровода, создают и коммутируют движущие потоки воздуха в нём, при этом корпус-салон оборудован бортовым компьютером, включённым через указанный канал связи в единое информационное пространство ТрС, и конструктивно выполнен в виде прозрачной пустотелой цилиндрической, заострённой с переднего конца капсулы (рис. 1), имеющей впускные и выпускные регулируемые решётки, входную дверь-люк открываемую сдвигом внутрь-назад в области потолка, переднее и заднее регулируемые по высоте сидений и наклону спинок пассажирские кресла с пристежными ремнями, а так же позиционируемой при движении и остановках фиксаторами качения в пазах трубопровода, который собирается из прозрачных ударопрочных труб, содержащих аварийные люки с возможностью их открытия сдвигом вверх-в-бок, и размещается на опорах, приподнятых относительно поверхности земли.

Рис. 1 Транспортная труба (4) с капсулой (5): 6 – люк для посадки пассажиров; 7 – кресла для пассажиров; 8 – колёса

Рис. 2 Блок-схема ППТС. Здесь 1 – это блок АСУТП управления движением капсул 5 в трубопроводе 4. Управление идёт по каналу связи 2 путём активизации компрессорных станций 3

2. ТрС по п.1 (рис. 2), в которой центр автоматического управления распределяет зоны ответственности среди местных и региональных центров автоматического управления и объединяет их, а также остальных участников движения в единое информационное пространство.

3. ТрС по п.1 (рис. 3), в которой локальное управление движением конкретной капсулы на участке между двумя соседними компрессорными станциями передаётся компьютеру одной из них, назначенной ведущей.

4. ТрС по п.1, в которой расстояние между соседними компрессорными станциями определяется условиями создания необходимого коэффициента полезного действия для движения капсулы в рамках допустимых скоростей, с учётом рельефа местности и загрузки.

Рис. 3 Под действием давления капсула 5, наружный диаметр которой на 0,5-1 см меньше внутреннего диаметра трубы 4, движется, фиксируясь колёсами в пазах трубы

5. ТрС по п.1, в которой трубопроводы на вокзалах переключаются на нужные направления движения, или к посадочным платформам, посредством поворотных контактных устройств.

6. ТрС по п.5, в которой поворотное контактное устройство представляет собой отрезок трубы, который после заезда и остановки в нём капсулы, вращением в горизонтальной плоскости на 180 градусов соединяется с выбранной для продолжения маршрута веткой трубопровода.

7. ТрС по п.1, компрессорные станции которой содержат два стыковочных узла на каждой ветке проходящего трубопровода, обслуживающие её левые и правые каналы.

8. ТрС по п.7, в которой трубопровод состоит из двух веток встречного движения.

9. ТрС по п.7, в которой шторки стыковочных узлов закрываются и открываются механизмом управления, а также блокируются в закрытом состоянии соответствующими ловителями, по сигналам компьютера своей компрессорной станции.

10. ТрС по п.1, в которой бортовой компьютер капсулы имеет выход на канал связи, монитор и клавиатуру управления, транслирует в автоматическом режиме телеметрию движения, посылает запросы пассажира в центр управления движением, принимает от него текущую информацию, поддерживает интернет-вещание.

11. ТрС по п.10, в которой наряду с компьютером салон капсулы содержит необходимую периферию, как-то: микрофон, наушники, акустические системы, освещение, аккумулятор, а также имеет на потолочной части свето-поглощающее покрытие, например, вида «хамелеон».

12. ТрС по п.1, в которой впускная регулируемая вентиляционная решётка капсулы располагается в области её задней стенки, обрамлённой по периметру прорезиненной юбкой, а выпускная регулируемая вентиляционная решётка размещается на боковой передней поверхности.

13. ТрС по п.1, в которой капсулы, трубопроводы, а также их люки выполняются из полимерного соединения высокой прочности.

14. ТрС по п.13, в которой посадочные и аварийные люки выполняются конструктивно по типу «фонарь» и имеют уплотнители для герметизации в закрытом состоянии, а капсула оборудована аварийным тормозным устройством и аварийным мускульным приводом движения.

15. ТрС по п.1, в которой спинки кресел при необходимости складываются и обеспечивают, с применением пристежных ремней, размещение пассажира или груза в горизонтальном положении.

16. ТрС по п.1, в которой фиксаторы качения располагаются симметрично в углублениях на боковых цилиндрических поверхностях корпуса капсулы и выполняются прорезиненными и подпружиненными.

17. ТрС по п.1 или п. 16, в которой продольные пазы на внутренней поверхности трубопровода должны обеспечивать свободное движение в них фиксаторов качения.

18. ТрС по п.1 или п. 8, в которой трубопровод представляет две рядом расположенные параллельные ветки встречного движения, приподнятые на опорах над поверхностью земли.

3. ПРИМЕР ИЗОБРЕТАТЕЛЬСКОЙ СИТУАЦИИ

1. За последние 50 лет у двигателей автомобилей сни;ty в 2-3 раза расход бензина путём увеличения степени сжатия горючей смеси в их цилиндрах, при этом увеличилась температура горения с 900оС до 1200оС. Очистку выхлопных газов от несгоревшего топлива улучшили также применением Pt-катализатора. Повышение в камере сгорания температуры привело к тому, что недопустимо возросло в выхлопе содержание вредного окисла азота ON. Сейчас в патентном фонде ФИПС РФ много предложений по вводу в выхлопной тракт , мочевины и ещё одного катализатора для превращения окисла в азот по реакции: 4NH3 + 6NO =(kt1)=> 5N2 + 6H2O

и 6NO + 2СОN2Н4 (тв., мочевина) =(kt1)=> 5N2 + 2CO2 + 4H2O.

Это приводит к усложнению и удорожанию системы выхлопного тракта (СВТ) двигателя внутреннего сгорания (ДВС). Рассмотрим поиск решения по алгоритму генератора идей .

Поиск решения

2. Цель: очистить выхлопной газ от окисла азота NO, не усложняя тракт выхлопа. Зачем это надо: примесь газа NO в воздухе вредна для дыхания. Что мешает: Pt катализатор улучшает окисление в выхлопе СО и СхНуОz – продуктов неполного сгорания топлива, но не изменяет содержание NO, применение NН3-содержащего реактива усложняет систему выхлопного тракта.

3. ИКР: Само собой достигается в СВТ превращение NO в обычный N2 воздуха при вводе NН3-содержащего реактива без усложнения выхлопного тракта ДВС.

4.1 Улучшить очистку выхлопного газа от окисла азота NO.

4.2 Устранить усложнение выхлопного тракта при очистке от NO.

Технические противоречия:

4.4 Устранить в выхлопе NO можно восстановлением аммиаком, но недопустимо вводить реактив простым способом (в большом избытке), чтобы не выделять из СВТ вредный газ аммиак.

4.5 При высокой точности внесения в выхлопной тракт реактива (газа, жидкости или твёрдого тела), содержащего NН3 или другой восстановитель, нейтрализуется вред выхлопного газа (по NO / NН3), но решение недопустимо усложняет СВТ двигателя.

Выберем п. 4.2 – упростить выхлопной тракт ДВС.

5. Поиск идеи (используя 30 абстрактных изобретательских приёмов) :

5.1 Ресурсы компонентов системы:

5.1.1 ресурс энергии – выхлопной газ имеет температуру 200 - 500оС (он содержит до 70% химической энергии от сжигания бензина), надо бы как-то использовать эту энергию?

5.1.2 вещества – NO в выхлопе, окислитель, вредная примесь; смесь выхлопных газов содержит также СО, СхНуОz – восстановители, но не активные в отношении к NO. Выхлопной тракт СВТ включает трубу, блок с Pt катализатором, глушитель, блок ввода NН3-реагента, выходное отверстие трубы.

5.1.3 информация – имеем справочники восстановителей и окислителей с данными об их потенциалах, нужны также неизвестные данные о кинетике реакций между ними.

5.1.4 производные от этих ресурсов системы – например, вещества бывают присутствующие, отсутствующие и изменённые (в другом агрегатном или энергетически активированном состояниях) или разности энергий, или заменить вещество.

5.1.5 концентрация неких ресурсов, если она доступна и нужна.

5.2 Ресурсы времени:

5.2.1 заранее – требуется проектирование и установка в СВТ блока восстановления для превращения NO в N2.

5.2.2 после – естественно, после выхлопа из ДВС.

5.2.3 пауза – у ДВС при работе пауз нет, выброс газов непрерывен.

5.2.4 ускорить - скорость превращения NO в N2 должна соответствовать скорости выброса NO из ДВС, пока скорость распада NO слишком мала.

5.2.5 замедлить – здесь не нужно.

5.3 Ресурсы пространства:

5.3.1 другое измерение – части (блоки) системы тракта СВТ находятся последовательно в линии, расположить их иначе?

5.3.2 асимметрия – все части СВТ симметричны относительно оси потока выхлопных газов.

5.3.3 матрёшка – что-то в другое вставить: труба в трубе?

5.3.4 вынесение – блок подготовки реактива вынесен из линии потока – это усложняет СВТ.

5.3.5 локализация – расположение частей СВТ не способствует использованию ресурса восстановителя (С, СО, СхНуО) для устранения вредного NO, ввести катализатор этой реакции перед Pt-катализатором?

5.4 Ресурсы структуры:

5.4.1 искпючение – чтобы не усложнять СВТ, нужно убрать блок подготовки и ввода NН3-восстановителя /мочевины.

5.4.2 дробление – приём «матрёшка» подсказывает, что часть СВТ (труба?) где-то должна быть разделена, тогда одну трубу можно вставить в другую (по п.5.3.3 – матрёшка).

5.4.3 объединение – если иметь катализатор для реакции (использовать имеющиеся вещества) NO + CxHyO, CO =(kt2, t=300°C)=> N2 + CO2 + H2O

5.4.4 посредник – неизвестный катализатор (kt2)?

5.4.5 копия – не пригоден в СВТ?

5.5 Условия:

5.5.1 частично – если вводить NH3-реагент, то его надо 0,95 от точного количества.

5.5.2 избыточно – NH3 вредный, его избыток не желателен.

5.5.3 согласовано – ввод NH3-реагента согласовать с переменным объёмом или другим параметром выхлопного газа в СВТ.

5.5.4 динамично – означает изменять ввод количеств реагента.

5.5.5 управляемо – ввод NH3-реагента управляется объёмом выхлопа, переменой мощности ДВС.

5.6 Параметры:

5.6.1 вакцинация – приём подсказывает, что в СВТ должно быть средство против роста выброса NO – им мог быть катализатор (kt2) реакции между самими компонентами выхлопного газа в СВТ.

5.6.2 изоляция – такой катализатор (kt2) уменьшит вред выхлопа.

5.6.3 противодействие – намечаются 3 пути противодейстия вреду выхлопа:

1) добавить блок управляемого ввода NH3-реагента с достаточной точностью для очистки выхлопа;

2) подобрать катализатор реакции между компонентами выхлопа до реакции до-окисления на Pt-катализаторе;

3) поток выхлопа разделить на 2 потока, в одном потоке установить реагент и/или катализатор (kt3) превращения NO→NH3, потом эти потоки соединить на катализаторе kt2.

5.5.4 одноразовость – возможен ли твёрдый NH3-реагент, который производит очистку выхлопа от NO достаточно долго? Вводимые реагенты расходуются – они одноразовые.

5.5.5 инверсия – применение 1 вредного компонента выхлопа для очистки от 2-го по реакции: NO + CxHyO, CO=>... или вместо ввода в СВТ ДВС газа или жидкости (раствора NH3-реагента) ввести «NH3-реагент» в твёрдой форме, которая выдерживает Т в СВТ и быстро выделяет NH3 только при действии NO.

Возможные сочетания приёмов: все 3 пути (по приёму 5.6.3) используют из 5.1.1 Поле тепла СВТ для нейтрализации выхлопа и подготовку СВТ заранее по 5.2.1:

1-й путь – ввода NH3-реагента и добавление блока с катализатором по 5.2.4 опирается на сочетание приёмов 5.1.1 +5.1.2 +5.1.3 +5.5.1 +5.5.3 +5.6.1. Сущность изменений функции: 1) добавление блоков внешнего с реагентом и в линии СВТ блока ввода с катализатором (kt1) и управление вводом NH3-реагента согласовано с мощностью ДВС;

2) добавление в линию СВТ блока с катализатором реакции между компонентами выхлопа: NO + CxHyO, CO =(kt2)=>...;

3) дробление потока на два с помощью трубы в трубе (5.3.3), один поток не изменен, а во внешний поток вставлен блок с реагентом и kt3-катализом превращения NO +X =(kt3)=>NH3 …, далее 2 потока смешиваются для реакции NO +NH3 =(kt1)=>N2 +…

6. Концепции:

6.1 добавление в СВТ блоков внешнего с NH3-реагентом и в линии СВТ блока ввода с катализатором (kt1) реакции: NO +NH3 =(kt1)=>… при вводе NH3-реагента согласовано с мощностью ДВС;

6.2 добавление в линию СВТ блока с катализатором реакции между компонентами выхлопа по реакции: NO + CxHyO, CO =(kt2)=>... – состав и структура kt2 пока не известны (нужны исследования химиков);

6.3 дробление потока на два с помощью трубы в трубе, один поток не изменен, а в другом (внешнем) потоке вставлен блок с реагентом и катализатором превращения NO +X =(kt3)=>NH3 …, далее 2 потока смешиваются и происходит реакция: NO +NH3 =(kt1)=>N2 +… (нужен выбор Х).

6.4 ввести в линию СВТ блок с твёрдым NH3-источником Z, выделяющим NH3 ровно столько, сколько попало в блок NO, Z должен быть термоустойчив, чтобы не выделял NH3-избыток.

Оценка концепций:

6.1 - состоит в усложнении СВТ, и наиболее технически проработана (в ФИПС РФ имеется множество патентов, не рассмотрено усложнение СВТ путём введения обратной связи и не указан катализатор);

6.2 - наиболее простая СВТ и близкая к идеальному решению, но kt2 катализатор пока не отработан и неизвестен;

6.3 - промежуточная по сложности СВТ, но катализаторы kt2 и kt3 пока не разработаны и неизвестны (есть патент этого СВТ без описания катализаторов).

6.4 - в линию СВТ блок с твёрдым NH3-источником Z, устойчивым при температуре в СВТ и реагирующим только при наличии NO (Z пока не найден).

6.5 - Новые нерешенные задачи: необходима разработка катализаторов kt2 и kt3 (нужна помощь специалистов НИИ катализа РАН) и реагентов-нейтрализаторов Х или термоустойчивого Z - NH3-реагента(известны: мочевина Тразл~150°C, ацетилмочевина Тразл~250°C, ацетат мочевины Тразл~250°C, неизвестна термоустойчивость других производных – требуется до 500°C и выделение NH3при действииNO).

Разработана и предложена заявка на патент на пассажирскую пневмотранспортную систему (ППТС) с целью обеспечения безопасного движения в почти любых погодных условиях.

Рассмотрен пример поиска решения задачи с применениями окислительно-восстановительных реакций по нейтрализации газа в системе выхлопа двигателя внутреннего сгорания. Выявлены четыре возможных способа устранения NO из выхлопного газа, а патенты есть на два из этих способов. Для завершения решения требуются консультации специалистов по катализу и поиск термо-устойчивого твёрдого NH3-выделяющего реагента.

Отметим дополнительно, что широкий перевод автомобильного хозяйства на пневмотранспортную систему, позволяет в принципе снять проблему выхлопа любых газов.

СПИСОК ЛИТЕРАТУРЫ:

Альтшуллер изобретательства. Воронеж: Центр-чернозём. кн. изд-во, 1964. О прогнозировании развития ТС. Баку, 1975/ http://www. altshuller. ru/triz/zrts3.asp Альтшуллер Г., осемь мыслей о природе и технике // Шанс на приключение: сб. /сост. А. Селюцкий. Петрозаводск: Изд-во , 1991. резентация программы «Генератор идей». – URL: http://www/TRIZ-tigr. ru , Утёмов творчество: Методы конструирования новых идей: .- изд. 2-е. – Киров: Изд-во МЦИТО, 2014. – 114 с. , и др. Заявка на патент РФ 2011149865, опубл. 27.06.2013 и др. БД патентов по применениям химических эффектов: http://dace. ru (DatabaseApplyofChemicalEffects): новости (3000 реф.), БДХЭ (2250), статьи (10). Эвристика-3: метод. указания к решению химических задач / сост. . Чуваш. ун-т – Чебоксары: 2007, 116 с. и др. Основы теории систем и решения творческих технических задач – /В. Михайлов, А. Михайлов, Е. Андреев, В. Гальетов, В. Желтов. - Чебоксары: Изд. Чуваш. ун-та, 2012. С. 133-135, 156-199, 206-241, 255-284, 325-330. Михайлов эффекты в системе 40 изобретательских приёмов и после него //сб. Три поколения ТРИЗ – СПб: РА ТРИЗ. – 2014. С. 50-54. Малкин С., Михайлов решений творческих задач по алгоритму Генератора идей //там же. С. 55-57. Малкин С., Утёмов творческих задач по алгоритму ГИ для развития личности /ж-л Концепт http://e-concept. ru (2014 ноябрь, Киров), 7 с. , Желтов креативности в инженерном образовании / Инженерное образование – 17, 2015, с.68-75 , О применении ТРИЗ для решения экологических задач //сб. ТРИЗ-фест-2013, - СПб-Киев: МАТРИЗ, 2013, с.26-35. Михайлов изобретателю химические эффекты (пример очистки выхлопа от окиси азота) //сб. Три поколения ТРИЗ – СПб: РА ТРИЗ. – 2015. С.70-75. , Андреев транспортная система /сб. Дорожно-Транспортный Комплекс: состояние, проблемы и перспективы развития – Чебоксары: ВФ МАДИ-ГТУ, 2015. С. 134-141. , Андреев транспортная система – заявка РФ 2011149865, опубл. 27.06.2013, бюлл. 18.

Altshuller G. S. Invention bases. - Voronezh: Center chernozem. book publishing house, 1964./ru Altshuller G. S. About forecasting of development of the Technical systems. - Baku, 1975 /ru /http://www. altshuller. ru/triz/zrts3.asp Altshuller G., Rubin M. Eight thoughts of the nature and equipment. - In book: Chance of an adventure. Col. A. Selyutsky. Petrozavodsk: Publ. house Karelia, 1991. /ru Malkin of S. Presentation of the program Generator Ideas. - URL: http://www/TRIZ-tigr. ru Mikhailov V. A., Gorev P. M., Utyomov V. V. Scientific creativity: Methods of designing of new ideas: manual. - prod. the 2nd. - Kirov: Publ. house of MTsITO, 2014. – 114 pages. /ru Nikitin A., Mikhailov V., Andreev E. - Clain for patent RU2011149865 (publ. 27.06.2013). Mikhailov V. A. &Alls Date basa Apply of patents on Chemical Effects / http://dace. ru Evristica-3: manual to solution of chemical tascs / Mikhailov V. A., ChuvSU, 2007. 116 p. /ru Mikhailov V. A. &Alls Technical system basis and solution of creative technical tascs -/V. Mikhailov, A. Mikhailov, E. Andreev, V. Galyetov, V. Zheltov– Cheboksary: ChuvSU, 2012. P. 133-135, 156-284, 325-330. /ru Mikhailov V. A. Chemical effects in 40 key G. Altshuller and later on him. //coll. Three generation of TRIZ – Sankt-Peterburg: RATRIZ, 2014. P.50-54. /ru Malkin S., Mikhailov V. Search a creative task solution by generator idea algorithm /ibid. p. 55. /ru Malkin S., Mikhailov V., Utemov V. The creative task solution for personal progress /internet journal KONCEPT – november 2014, Kirov: http://e-koncept. ru ,7 p. /ru Mikhailov V., Mikhailov A., Zheltov V. Creative elements in engineer education //Engeneering Education (Novosibirsk) – 17, 2015. P. 68-75. /ru Andreev E., Mikhailov V., Filichev S. On the application of TRIZ for solution of ecological problems. – SPb-Kiev: MATRIZ-SPbSTU, 2013. P.26-35. /eng/rus Mikhailov V. A. Help to inventor the Chemical Effects // coll. Three generation of TRIZ – Sankt-Peterburg: RATRIZ, 2015. P. 70-75. /Rus/ Nikitin A. I., Mikhailov V. A., Andreev E. D. Passenger-and-freight transport system //coll. Road and transport Complex: a state, problems and prospects of development – Cheboksary: VF MADI-GTU, 2015. Page 134-141. /rus. Nikitin A. I., Mikhailov V. A., Andreev E. D., Andreev A. R. Passenger-and-freight transport system Clain RU 2011149865, publ. 27.06.2013. N 18.

Рассмотрим 40 основных приемов устранения технических противоречий.

1. Принцип дробления

а. Разделить объект на независимые части.

б. Выполнить объект разборным.

в. Увеличить степень дробления объекта.

Пример. Грузовое судно разделено на однотипные секции. При необходимости корабль можно делать длиннее или короче.

2. Принцип вынесения

Отделить от объекта "мешающую" часть ("мешающее" свойство) или, наоборот, выделить единственно нужную часть или нужное свойство.

В отличие от предыдущего приема, в котором речь шла о делении объекта на одинаковые части, здесь предлагается делить объект на разные части.

Пример. Обычно на малых прогулочных судах и катерах электроэнергия для освещения и других нужд вырабатывается генератором, работающим от гребного двигателя. Для получения электроэнергии на стоянке приходится устанавливать вспомогательный электрогенератор с приводом от двигателя внутреннего сгорания. Двигатель, естественно, создает ШУМ и вибрацию. Предложено разместить двигатель и генератор в отдельной капсуле, расположенной на некотором расстоянии от катера и соединенной с ним кабелем.

3. Принцип местного качества

а. Перейти от однородной структуры объекта или внешней среды (внешнего воздействия) к неоднородной.

б. Разные части объекта должны выполнять различные функции.

в. Каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

Пример. Для борьбы с пылью в горных выработках на инструменты (рабочие органы буровых и погрузочных машин) подают воду в виде конуса мелких капель. Чем мельче капли, тем лучше идет борьба с пылью, но мелкие капли легко образуют туман, это затрудняет работу. Решение: вокруг конуса мелких капель создают слой из крупных капель.

4. Принцип асимметрии

а. Перейти от симметричной формы объекта к асимметричной.

б. Если объект уже асимметричен, увеличить степень асимметрии.

Пример. Противоударная автомобильная шина имеет одну боковину повышенной прочности - для лучшего сопротивления ударам о бордюрный камень тротуара.

5. Принцип объединения

а. Соединить однородные или предназначенные для смежных операций объекты.

б. Объединить во времени однородные или смежные операции.

Пример. Сдвоенный микроскоп-тандем. Работу с манипулятором ведет один человек, а наблюдением и записью целиком занят второй.

6. Принцип универсальности

Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

Пример. Ручка для портфеля одновременно служит эспандером (а. с. № 187 964).

7. Принцип "матрешки"

а. Один объект размещен внутри другого, который, в свою очередь, находится внутри третьего и т. д.

б. Один объект проходит сквозь полость в другом объекте.

Пример. "Ультразвуковой концентратор упругих колебаний, состоящий из скрепленных между собой полуволновых отрезков, отличающийся тем, что с целью уменьшения длины концентратора и увеличения его устойчивости полуволновые отрезки выполнены в виде полых конусов, вставленных один в другой" (а. с. № 186 781). В а. с. № 462 315 абсолютно такое же решение использовано для уменьшения габаритов выходной секции трансформаторного пьезоэлемента. В устройстве для волочения металла по а. с. № 304 027 "матрешка" составлена из конусных волок.

8. Принцип антивеса

а. Компенсировать вес объекта соединением с другим объектом, обладающим подъемной силой.

б. Компенсировать вес объекта взаимодействием со средой (преимущественно за счет аэро- и гидродинамических сил). Приме р. "Центробежный тормозного типа регулятор числа оборотов роторного ветродвигателя, установленный на вертикальной оси ротора, отличающийся тем, что с целью поддержания скорости вращения ротора в малом интервале числа оборотов при сильном увеличении мощности грузы регулятора выполнены в виде лопастей, обеспечивающих аэродинамическое торможение" (а. с. № 167 784).

Интересно отметить, что в формуле изобретения четко отражено противоречие, преодолеваемое изобретением. При заданной силе ветра и заданной массе грузов получается определенное число оборотов. Чтобы его уменьшить (при возрастании силы ветра). нужно увеличить массу грузов. Но грузы вращаются, к ним трудно подобраться. И вот противоречие устранено тем, что грузам. придана форма, создающая аэродинамическое торможение, т. е. грузы выполнены в виде крыла с отрицательным углом атаки.

Общая идея очевидна: если нужно менять массу движущегося тела, а массу менять нельзя по определенным соображениям, то телу надо придать форму крыла и, меняя наклон крыла к направлению движения, получать дополнительную силу, направленную в нужную сторону.

9. Принцип предварительного антидействия

Если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействне.

Пример. "Способ резания чашечным резцом, вращающимся вокруг своей геометрической оси в процессе резания, отличающийся тем, что с целью предотвращения возникновения вибрации чашечный резец предварительно нагружают усилиями, близкими по величине и направленными противоположно усилиям, возникающим в процессе резания" (а. с. № 536866).

10. Принцип предварительного действия

а. Заранее выполнить требуемое действие (полностью или хотя бы частично).

б. Заранее расставить объекты так, чтобы они могли вступить в действие без затрат времени на доставку и с наиболее удобного места.

Примером может служить приведенное выше решение задачи 41.

11. Принцип "заранее подложенной подушки"

Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

Пример. "Способ обработки неорганических материалов, например стекловолокон, путем воздействия плазменного луча, отличающийся тем, что с целью повышения механической прочности на неорганические материалы предварительно наносят раствор или расплав солей щелочных или щелочно-земельных металлов" (а. с. № 522 150). Заранее наносят вещества, "залечивающие" микротрещины. Есть а. с. № 456 594, по которому на ветвь дерева (до спиливания) ставят кольцо, сжимающее ветвь. Дерево, чувствуя "боль", направляет к этому месту питательные и лечащие вещества. Таким образом, эти вещества накапливаются до спиливания ветки, что способствует быстрому заживлению после спиливания.

12. Принцип эквипотенциальности

Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

Пример. Предложено устройство, исключающее необходимость поднимать и опускать тяжелые пресс-формы. Устройство выполнено в виде прикрепленной к столу пресса приставки с рольгангом (а. с. № 264679).

13. Принцип "наоборот"

а. Вместо действия, диктуемого условиями задачи, осуществить обратное действие.

б. Сделать движущуюся часть объекта или внешней среды неподвижной, а неподвижную - движущейся. в. Перевернуть объект "вверх ногами", вывернуть его.

Пример. Рассматривая задачу 9 (о фильтре для улавливания пыли), мы познакомились с а. с. № 156 133: фильтр сделан из магнитов, между которыми расположен ферромагнитный порошок Через семь лет появилось а. с. № 319 325, в котором фильтр вывернут- "Электромагнитный фильтр для механической очистки жидкостей и газов, содержащий источник магнитного поля и фильтрующий элемент из зернистого магнитного материала, oтличающийся тем, что с целью снижения удельного расхода электроэнергии и увеличения производительности фильтрующий элемент размещен вокруг источника магнитного поля и образует внешний замкнутый магнитный контур".

14. Принцип сфероидальносги

а. Перейти от прямолинейных частей к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.

б. Использовать ролики, шарики, спирали.

в. Перейти от прямолинейного движения к вращательному, использовать центробежную силу.

Пример. Устройство для вварки труб в трубную решетку имеет электроды в виде катящихся шариков.

15. Принцип динамичности

а. Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.

б. Разделить объект на части, способные перемещаться относительно друг друга.

в. Если объект, в целом неподвижен, сделать его подвижным, перемещающимся.

Пример. "Способ автоматической дуговой сварки ленточным электродом, отличающийся тем, что с целью широкого регулирования формы и размеров сварочной ванны электрод изгибают вдоль его образующей, придавая ему криволинейную форму, которую изменяют в процессе сварки" (а. с. № 258 490).

16. Принцип частичного или избыточного действия

Если трудно получить 100% требуемого эффекта, надо получить "чуть меньше" или "чуть больше" - задача при этом может существенно упроститься.

Прием уже знаком по задаче 34: цилиндры окрашивают с избытком, который затем удаляют.

17. Принцип перехода в другое измерение

а. Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (т. е. на плоскости). Соответственно задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.

б. Использовать многоэтажную компоновку объектов вместо одноэтажной.

в. Наклонить объект или положить его "набок".

г. Использовать обратную.сторону данной площади.

д. Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

Прием 17а можно объединить с приемами 7 и 15в. Получается цепь, характеризующая общую тенденцию развития технических систем: от точки к линии, затем к плоскости, потом к объему и, наконец, к совмещению многих объемов.

Пример. "Способ хранения зимнего запаса бревен на воде путем установки их на экватории рейда, отличающийся тем, что с целью увеличения удельной емкости экватории и уменьшения объема промороженной древесины бревна формируют в пучки:, шириной и высотой в поперечном сечении превышающими длину бревен, после чего сформированные пучки устанавливают в вертикальном положении" (а. с. № 236 318).

18. Использование механических колебаний

а. Привести объект в колебательное движение.

б. Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой).

в. Использовать резонансную частоту.

г. Применить вместо механических вибраторов пьезовибраторы.

д. Использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Пример. "Способ безопилочного резания древесины, отличающийся тем, что с целью снижения усилия внедрения инструмента в древесину резание осуществляют инструментом, частота пульсация которого близка к собственной частоте колебаний перерезаемой древесины" (а. с. № 307986).

19. Принцип периодического действия

а. Перейти от непрерывного действия к периодическому (импульсному) .

б. Если действие уже осуществляется периодически, изменить периодичность.

в. Использовать.паузы между импульсами для другого действия.

Пример. "Способ автоматического управления термическим циклом контактной точечной сварки, преимущественно деталей малых толщин, основанный на измерении термо-э.д.с., отличающийся тем, что с целью повышения точности управления при сварке импульсами повышенной частоты измеряют термо-э.д.с. в паузах между импульсами сварочного тока" (а. с. № 336 120).

20. Принцип непрерывности полезного действия

а. Вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).

б. Устранить холостые и промежуточные ходы.

Пример. "Способ обработки отверстий в виде двух пересекающихся цилиндров, например гнезд сепараторов подшипников, отличающийся тем, что с целью повышения производительности обработки ее осуществляют сверлом (зенкером), режущие кромки которого позволяют производить резание как при прямом, так и при обратном ходе инструмента" (а. с. № 262 582).

21. Принцип проскока

Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

Пример. "Способ обработки древесины при производстве шпона путем прогрева, отличающийся тем, что с целью сохранения природной древесины прогрев ее осуществляют кратковременным воздействием факела пламени газа с температурой 300-600°С непосредственно в процессе изготовления шпона" (а. с. № 338 371).

22. Принцип "обратить вред в пользу"

а. Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.

б. Устранить вредный фактор за счет сложения с другими вредными факторами.

в. Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

Пример. "Способ восстановления сыпучести смерзшихся насыпных материалов, отличающийся тем, что с целью ускорения процесса восстановления сыпучести материалов и снижения трудоемкости смерзшийся материал подвергают воздействию сверхнизких температур" (а. с. № 409 938).

23. Принцип обратной связи

а. Ввести обратную связь.

б. Если обратная связь есть, изменить ее.

Пример. "Способ автоматического регулирования температурного режима обжига сульфидных материалов в кипящем слое путем изменения потока нагружаемого материала в функции температуры, отличающийся тем, что с целью повышения динамической точности поддержания заданного значения температуры подачу материала меняют в зависимости от изменения содержания сернистого газа в отходящих газах" (а. с. .№ 302 382).

24. Принцип "посредника"

а. Использовать промежуточный объект, переносящий или передающий действие.

б. На время присоединить к объекту другой (легкоудаляемый) объект.

Пример. "Способ тарировки приборов для измерения динамических напряжений в плотных средах при статическом нагружении образца среды с заложенными внутри него прибором, отличающийся тем, что с целью повышения точности тарировки нагружение образца с заложенным внутри него прибором ведут через хрупкий промежуточный элемент" (а. с. № 354 135).

25. Принцип самообслуживания

а. Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.

б. Использовать отходы (энергии, вещества).

Пример. В электросварочном пистолете сварочную проволоку обычно подает специальное устройство. Предложено использовать для подачи проволоки соленоид, работающий от сварочного тока.

26. Принцип копирования

а. Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.

б. Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).

в. Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым. Пример. "Наглядное учебное пособие по геодезии, выполненное в виде написанного на плоскости художественного панно, отличающеееся тем, что с целью последующей геодезической съемки с панно изображения местности оно выполнено по данным тахеометрической съемки и в характерных точках местности снабжено миниатюрными геодезическими рейками" (а. с. № 86560).

27. Дешевая недолговечность взамен дорогой долговечности

Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

Пример. Мышеловка одноразового действия: пластмассовая трубка с приманкой; мышь входит в ловушку через конусообразное отверстие; стенки отверстия разгибаются и не дают ей выйти обратно.

28. Замена механической схемы

а. Заменить механическую схему оптической, акустической или "запаховой".

б. Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.

в. Перейти от неподвижных полей к движущимся, от фиксированных к меняющимся во времени, от неструктурных к имеющим определенную структуру.

г. Использовать поля в сочетании с ферромагнитными частицами.

Пример. "Способ нанесения металлических покрытий на термопластичные материалы путем контакта с порошком металла, нагретым до температуры, превышающей температуру плавления термопласта, отличающийся тем, что с целью повышения прочности сцепления покрытия с основой и его плотности процесс осуществляют в электромагнитном поле" (а. с. № 445 712).

29. Использование пневмо- и гидроконструкций

Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполяемые, воздушную подушку, гидростатические и гидрореактивные.

Пример. Для соединения гребного вала судна со ступицей винта в вале сделан паз, в котором размещена эластичная полая емкость (узкий "воздушный мешок"). Если в эту емкость подать сжатый воздух, она раздуется и прижмет ступицу к валу (а. с. ЛЬ 313 741). Обычно в таких случаях использовали металлический соединительный элемент, но соединение с "воздушным мешком" проще изготовить: не нужна точная подгонка сопрягаемых поверхностей. Кроме того, такое соединение сглаживает ударные нагрузки. Интересно сравнить это изобретение с опубликованным позже изобретением по а. с. № 445 611 на контейнер для транспортирования хрупких изделий (например, дренажных труб): в контейнере имеется надувная оболочка, которая прижимает изделия и не дает им биться при перевозке. Разные области техники, но задачи и решения абсолютно идентичны. В a. c. № 249583 надувной элемент работает в захвате подъемного крана. В а. с. № 409 875 - прижимает хрупкие изделия в устройстве для распиловки. Таких изобретений великое множество. Видимо, просто, поpa прекратить патентовать такие предложения, а в учебники конструирования ввести простое правило: если надо на время деликатно прижать один предмет к другому, используйте "воздушный мешок". Это, конечно, не значит, что весь прием 29 перестанет быть изобретательским.

"Воздушный мешок", прижимающий одну деталь к другой, - типичный веполь, в котором "мешок" играет роль механического поля. В соответствии с общим правилом развития вепольных систем следовало ожидать перехода к фепольной системе. Такой переход действительно произошел: в а. с. № 534 351 предложено внутрь "воздушного мешка" ввести ферромагнитный порошок, а для. усиления прижима использовать магнитное поле. И снова несовершенство формы патентования привело к тому, что запатентована не универсальная идея управления "воздушным мешком", а частное усовершенствование шлифовального "воздушного мешка"...

30. Использование гибких оболочек и тонких пленок

а. Вместо обычных конструкций использовать гибкие оболочки и тонкие пленки.

б. Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

Пример. "Способ формирования газобетонных изделий путем заливки сырьевой массы в форму и последующей выдержки, отличающийся тем, что с целью повышения степени вспучивания на залитую в форму сырьевую массу укладывают газонепроницаемую пленку" (а. с. № 339 406).

31. Применение пористых материалов

а. Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. д.).

б. Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Пример. "Система испарительного охлаждения электрических машин, отличающаяся тем, что с целью исключения необходимости подвода охлаждающего агента к машине активные части и отдельные конструктивные элементы выполнены из пористых материалов, например пористых порошковых сталей, пропитанных жидким охлаждающим агентом, который при работе машины испаряется и таким образом обеспечивает кратковременное, интенсивное и равномерное ее охлаждение" (а. с. № 187 135).

32. Принцип изменения окраски

а. Изменить окраску объекта или внешней среды.

б. Изменить степень прозрачности объекта или внешней среды.

в. Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.

г. Если такие добавки уже применяются, использовать люминофоры.

Пример. Патент США № 3 425 412: прозрачная повязка, позволяющая наблюдать рану, не снимая повязки.

33. Принцип однородности

Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

Пример. "Способ получения постоянной литейной формы путем образования в ней рабочей полости по эталону методом литья, отличающийся тем, что с целью компенсации усадки изделия, полученного в этой форме, эталон и форму выполняют из материала, одинакового с изделием" (а. с. № 456 679).

34. Принцип отброса и регенерация частей

а. Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. п.) или видоизменена непосредственно в ходе работы.

б. Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

Пример. "Способ исследования высокотемпературных зон, преимущественно сварочных процессов, при котором в исследуемую зону вводят зонд-световод, отличающийся тем, что с целью улучшения возможности исследования высокотемпературных зон при дуговой и электрошлаковой сварке используют плавящийся зонд-световод, который непрерывно подают в исследуемую зону со скоростью не менее скорости его плавления" (а. с. № 433 397).

35. Изменение агрегатного состояния объекта

Сюда входят не только простые переходы, например от твердого состояния к жидкому, но и переходы к "псевдосостояниям" ("псевдожидкость") и промежуточным состояниям, например использование эластичных твердых тел.

Пример. Патент ФРГ № 1 291 210: участок торможения для посадочной полосы выполнен в виде "ванны", заполненной вязкой жидкостью, на которой расположен толстый слой эластичного материала.

36. Применение фазовых переходов

Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.

Пример. "Заглушка для герметизации трубопроводов и горловин с различной формой сечения, отличающаяся тем, что с целью унификации и упрощения конструкции она выполнена в виде стакана, в который заливается легкоплавкий металлический сплав, расширяющийся при затвердевании и обеспечивающий герметичность соединения" (а. с. № 319 806).

37. Применение теплового расширения

а. Использовать тепловое расширение (или сжатие) материалов.

б. Использовать несколько материалов с разными коэффициентами теплового расширения.

Пример. В а. с. No 463423 предложено крышу парников делать из шарнирно-закрепленных пустотелых труб, внутри которых.находится легкорасширяющаяся жидкость. При изменении температуры меняется центр тяжести труб, поэтому трубы сами поднимаются и опускаются. Кстати, это ответ на задачу 30. Разумеется, можно использовать и биметаллические пластины, укрепленные.на крыше парника.

38. Применение сильных окислителей

а. Заменить обычный воздух обогащенным.

б. Заменить обогащенный воздух кислородом.

в. Воздействовать на воздух или кислород, ионизирующими излучениями.

г. Использовать озонированный кислород.

д. Заменить озонированный (или ионизированный) кислород озоном.

Пример. "Способ получения пленок феррита путем химических газотранспортных реакций в окислительной среде, отличающий с я тем, что с целью интенсификации окисления и увеличения однородности пленок процесс осуществляют в среде озона" (а. с. №261 859).

39. Применение инертной среды

а. Заменить обычную среду инертной.

б. Вести процесс в вакууме. Этот прием можно считать антиподом предыдущего.

Пример. Способ предотвращения загорания хлопка в хранилище, отличающийся тем, что с целью повышения надежности хранения хлопок подвергают обработке инертным газом в процессе его транспортировки к месту хранения" (а. с. № 270 171).

40. Применение композиционных материалов перейти от однородных материалов к композиционным

Пример. "Среда для охлаждения металла при термической обработке. отличающаяся тем, что с целью обеспечения заданной скорости охлаждения она состоит из взвеси газа в жидкости" (а. с. № 187060).


ПРИНЦИП ВЫНЕСЕНИЯ

Отделить от объекта "мешающую" часть ("мешающее" свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).

ПРИМЕРЫ

Авторское свидетельство № 153533. Устройство для защиты от рентгеновских лучей, отличающееся тем, что, с целью защиты от ионизирующего излучения головы, плечевого пояса, позвоночника, спинного мозга и гонад пациента при флюорографии, например, грудной клетки, оно снабжено защитными барьерами и вертикальным, соответствующим позвоночнику стержнем, изготовленным из материала, не пропускающего рентгеновские лучи.

Целесообразность этой идеи очевидна.

Изобретение выделяет наиболее вредную часть потока и блокирует ее. Заявка подана в 1962 году; между тем это простое и нужное изобретение могло быть сделано значительно раньше.

Мы привыкаем рассматривать многие объекты как набор традиционных и неотъемлемых друг от друга частей. В набор вертолета, например, входят и баки с горючим. Действительно, обычный вертолет вынужден возить горючее.

Еще один ПРИМЕР.
Столкновение самолетов с птицами вызывают иногда тяжелые катастрофы. В США запатентованы самые различные способы отпугивания птиц от аэродромов (механические чучела, распыление нафталина и т.д.). Наилучшим оказалось громкое воспроизведение крика перепуганных птиц, записанное на магнитофонную ленту.

Отделить птичий крик от птиц - решение конечно, необычное, но характерное для принципа вынесения.

ПРИЕМ 3
ПРИНЦИП МЕСТНОГО КАЧЕСТВА
а) Перейти от одной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной.
б) Разные части объекта должны иметь (выполнять) различные функции.
в) Каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

Авторское свидетельство № 256708. Способ подавления пыли в горных выработках, отличающийся тем, что, с целью предотвращения распространения тумана по выработкам и сноса его с источника пылеобразования вентиляционным потоком, подавление пыли производят одновременно тонкодиспергированной и грубодисперсной водой, причем вокруг конуса тонкодиспергированной воды создают пленку из грубодисперсной воды.

Авторское свидетельство № 280328. Способ сушки зерна риса, отличающийся тем, что, с целью уменьшения образования трещиноватых зерен, рис перед сушкой разделяют по крупности на фракции, которые сушат раздельно с дифференцированными режимами.

Принцип местного качества отчетливо отражается в историческом развитии многих машин: они постепенно дробились, и для каждой части создавались наиболее благоприятные местные условия.

Первоначально паровой двигатель представлял собой цилиндр, выполнявший одновременно функции парового котла и конденсатора. Вода заливалась непосредственно в цилиндр. Огонь обогревал цилиндр, вода закипала, пар поднимал поршень, после чего жаровню с огнем убирали, а цилиндр поливали холодной водой. Пар конденсировался, и поршень под действием атмосферного давления шел вниз.

Позднее изобретатели догадались отделить паровой котел от цилиндра двигателя. Это позволило существенно сократить расход топлива.

Однако отработанный пар по-прежнему конденсировался в самом цилиндре, что вызывало огромные тепловые потери. Нужно было сделать следующий шаг - отделить от цилиндра конденсатор. Эту идею выдвинул и осуществил Джеймс Уатт. Вот что он рассказывает:

"После того как я всячески обдумывал вопрос, я пришел к твердому заключению: для того, чтобы иметь совершенную паровую машину, необходимо, чтобы цилиндр всегда был так же горяч, как и входящий в него пар. Однако конденсация пара для образования вакуума должна происходить при температуре не выше 30 градусов...

Это было возле Глазго, я вышел на прогулку около полудня. Был прекрасный день. Я проходил мимо старой прачечной, думая о машине, и подошел к дому Герда, когда мне пришла в голову мысль, что пар ведь упругое тело и легко устремляется в пустоту. Если установить связь между цилиндром и резервуаром с разреженным воздухом, то пар устремиться туда, и цилиндр не надо будет охлаждать. Я не дошел еще до Гофхауза, как все дело было кончено в моем уме!"

ПРИЕМ 4
ПРИНЦИП АССИМЕТРИИ
Перейти от симметричной формы объекта к асимметричной.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.85:
а) Перейти от симметричной формы объекта к асимметричной.
б) Если объект асимметричен, увеличить степень асимметрии.)

Машины рождаются симметричными. Это их традиционная форма. Поэтому многие задачи, трудные по отношению к симметричным объектам, легко решаются нарушением симметрии.

Тиски со смещенными губами. В отличие от обычных, они позволяют зажимать в вертикальном положении длинные заготовки.

Фары автомобиля должны работать в разных условиях: правая должна светить ярко и далеко, а левая - так, чтобы не слепить водителей встречных машин. Требования разные, а устанавливались фары всегда одинаково. Лишь несколько лет назад возникла идея несимметричной установки фар: левая освещает дорогу на расстоянии до 25 метров, а правая - значительно дальше.

Патент США № 3435875. Асимметричная пневматическая шина имеет одну боковину повышенной прочности и сопротивляемости ударам о бордюрный камень тротуара.

ПРИЕМ 5
ПРИНЦИП ОБЪЕДИНЕНИЯ

а) Соединить однородные или предназначенные для смежных операций объекты.
б) Объединить во времени однородные или смежные операции.

ПРИЕМ 6
ПРИНЦИП УНИВЕРСАЛЬНОСТИ

Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

В Японии рассматривается возможность постройки танкера, оборудованного нефтеперегонной установкой. Смысл проекта - совмещение во времени процессов транспортировки и переработки нефти.

Авторское свидетельство № 160100. Способ транспортировки материала, например табачных листьев, к сушильным установкам с помощью водяного потока в гидротранспортере, отличающийся тем, что, с целью одновременного осуществления промывки табачных листьев и фиксации их цвета, используют воду, нагретую до 80-85 C.

Авторское свидетельство № 264466. Элемент памяти на тонкой цилиндрической пленке, нанесенной на диэлектрическую подложку, отличающийся тем, что, с целью упрощения элемента, сама пленка служит шиной записи-считывания.

ПРИЕМ 7
ПРИНЦИП "МАТРЕШКИ"

а) Один объект размещен внутри другого объекта, который, в свою очередь, находится внутри третьего и т. д.;
б) Один объект проходит сквозь полость в другом объекте.

Авторское свидетельство № 110596. Способ хранения и транспортировки разнородных по вязкости нефтепродуктов в корпусе плавучей емкости, отличающийся тем, что хранение их с целью уменьшения потерь тепла высоковязких продуктов производят в отсеках емкости, расположенных внутри отсеков, заполненных невязкими сортами нефтепродуктов.


ПРИЕМ 8
ПРИНЦИП АНТИВЕСА

а) Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой.
б) Компенсировать вес объекта взаимодействием со средой (за счет аэро-, гидродинамических и других сил).

Авторское свидетельство № 187700. Способ спуска в скважину и извлечения из нее стреляющей и взрывной аппаратуры, отличающийся тем, что, с целью удешевления и упрощения прострелочных и взрывных работ, спуск стреляющей и взрывной аппаратуры производят свободно под действием собственного веса, а подъем к устью скважины - с помощью встроенного в корпус реактивного двигателя.

При создании сверхмощных турбогенераторов возникла сложная задача: как уменьшить давление ротора на подшипники? Решение нашли в том, что над турбогенератором установили сильный электромагнит, компенсирующий давление ротора на подшипники.

Иногда приходится решать обратную задачу: компенсировать недостаток веса. При создании и эксплуатации шахтных электровозов возникает явное техническое противоречие: для увеличения тяги нужно утяжелять электровоз, а для уменьшения его мертвого веса следует делать электровоз возможно более легким. Группа сотрудников Ленинградского горного института разработала и успешно применила простое устройство, позволяющее снять это техническое противоречие и в полтора раза увеличить производительность рудничных электровозов: в ведущих колесах монтируется мощный электромагнит; создается магнитное поле, охватывающее колеса и рельсы; сила сцепления резко возрастает, а вес электровоза может быть снижен.

ПРИЕМ 9
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ
Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.86:
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО АНТИДЕЙСТВИЯ
а) Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.
б) Если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействие.)

ПРИМЕРЫ
Авторское свидетельство № 84355. Заготовку турбинного диска устанавливают на вращающийся поддон. Нагретая заготовка по мере охлаждения сжимается. Но центробежные силы (пока заготовка не потеряла пластичности) как бы отштамповывают заготовку. Когда же деталь остынет, в ней появятся сжимающие усилия.

На этом принципе основана вся технология предварительного напряжения железобетона: чтобы бетон лучше работал на растяжение, его предварительно укорачивают. Это едва ли не единственный случай, когда строительная техника использует более передовые методы, нежели машиностроение. Предварительно напряженные конструкции применяются в машиностроении еще очень редко, между тем использование этого приема могло бы дать колоссальные результаты.

Рис. 15
Принцип предварительного напряжения: трубы составного вала заранее скручены в направлении, противоположном рабочей деформации.

Как, например, сделать вал прочнее, не увеличивая его наружный диаметр? Решение этой задачи показано на Рис. 15. Вал составлен из вставленных одна в другую труб, предварительно закрученных на определенные расчетом углы. Иными словами, вал предварительно получает деформацию, противоположную по знаку той деформации, какую он получает во время работы. Крутящий момент должен сначала снять эту предварительную деформацию, только после этого начнется деформация вала в "нормальном" направлении. Составной вал весит вдвое меньше равного ему по прочности обычного монолитного.


ПРИЕМ 10
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО ИСПОЛНЕНИЯ
а) Заранее выполнить требуемое изменение объекта (полностью или хотя бы частично).
б) Заранее расставить объекты так, чтобы они могли вступить в действие с наиболее удобного места и без затрат времени на доставку.

(Название приема в формулировке по книге "Творчество как точная наука", 1979, с.86:
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО ДЕЙСТВИЯ )

Авторское свидетельство № 61056. Черенки многих плодово-ягодных и других культур, посаженные в почву, не укореняются вследствие недостатка питательных веществ в черенке. По данному изобретению предлагается создавать запас питательных веществ заранее, насыщая перед посадкой черенки в ванне с питательной смесью.

Авторское свидетельство № 162919. Способ снятия гипсовых повязок с помощью проволочной пилы, отличающийся тем, что, с целью предупреждения травм и облегчения снятия повязки, пилу помещают в предварительно смазанную подходящей смазкой трубку, выполненную, например, из полиэтилена, и заранее загипсовывают под повязку при ее наложении. Благодаря этому распиливать повязку можно от тела наружу - без опасения задеть тело.

Любопытный случай использования этого же принципа - окраска древесины до того, как дерево срубили: красители поступают под кору дерева и разносятся соками по всему стволу.

ПРИЕМ 11
ПРИНЦИП "ЗАРАНЕЕ ПОДЛОЖЕННОЙ ПОДУШКИ"

Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

ПРИМЕРЫ

Авторское свидетельство № 264626. Способ снижения токсического действия химических соединений с помощью присадок, отличающийся тем, что, с целью уменьшения опасности отравления химическими веществами, а также продуктами их превращений в организме, присадки добавляют непосредственно в исходные токсичные химические соединения при их изготовлении.

Авторское свидетельство № 297361. Способ предотвращения распространения лесного пожара посредством создания заградительных полос из растений, отличающийся тем, что, с целью придания огнестойкости растениям, образующим заградительную полосу, в почву вносят биологически усваиваемые или химические элементы, тормозящие процесс их воспламенения.

Патент США № 2879821: жесткий металлический диск, заранее расположенный внутри автомобильной шины и позволяющий продолжать движение на спущенной шине без повреждения покрышки.

Принцип "заранее подложенной подушки" можно использовать не только для повышения надежности. Вот характерный пример. В связи с тем, что в американских библиотеках часто пропадают книги, изобретатель Эмануэль Трикилис предложил прятать в переплеты кусочек намагниченного метала. При выдаче книги библиотекарь размагничивает этот металлический вкладыш, проталкивая книгу под специальной электрической спиралью. Если посетитель попытается уйти, взяв незарегистрированную книгу, то спрятанный в двери прибор среагирует на магнитный вкладыш в переплете.

Горноальпийская спасательная станция в Швейцарии применила аналогичный метод для быстрого обнаружения людей, попавших в снежную лавину. Теперь лыжник или житель местности, в которой часты лавины, носит небольшой магнит. При несчастном случае этот магнит помогает легко обнаружить пострадавшего с помощью искателя даже под трехметровым покровом снега.

ПРИЕМ 12
ПРИНЦИП ЭКВИПОТЕНЦИАЛЬНОСТИ

Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

Авторское свидетельство № 110661. Контейнеровоз, в котором груз не поднимается в кузов, а только приподнимается гидроприводом и устанавливается на опорную скобу. Такая машина работает без крана и перевозит значительно более высокие контейнеры.

ПРИЕМ 13
ПРИНЦИП "НАОБОРОТ"

а) Вместо действия, диктуемого условиями задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать).
б) Сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную - движущейся.
в) Перевернуть объект "вверх ногами".

Авторское свидетельство № 184649. Способ вибрационной очистки металлоизделий в абразивной среде, отличающийся тем, что, с целью упрощения процесса очистки, движения вибрации сообщают обрабатываемой детали.

Изобретатель решил эту задачу просто и изящно: металл идет по трубкам, опущенным ко дну литейной формы. По мере заполнения форма движется вниз, и, таким образом, каждая порция металла подается именно туда, где она должна застыть (см. Рис. 16).

Рис. 16
Принцип "наоборот": в отличие от обычного способа заливки, движется форма, а поступающий в нее металл остается неподвижным.

Авторское свидетельство № 109942. Это изобретение решает важную проблему отливки крупногабаритных тонкостенных деталей. При отливке таких деталей желательно, чтобы металл поступал в форму сверху, и затвердение шло снизу вверх. Но лить металл в форму ("дождевой" способ) допустимо с высоты не более пятнадцати сантиметров, иначе металл сгорит или пропитается газами. А как быть, если форма имеет высоту два-три метра? Если подавать металл снизу, то первые порции его затвердеют, не успев подняться к верхней части формы.

Литье всегда осуществлялось так, что двигался металл, а форма была неподвижной. Здесь все наоборот: движется форма, а залитый в нее металл остается неподвижным. Это позволило "совместить несовместимое": плавность заполнения формы и затвердевание металла снизу вверх, как при литье "дождевым" способом.

ПРИЕМ 14
ПРИНЦИП СФЕРОИДАЛЬНОСТИ

а) Перейти от прямолинейных частей объекта к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.
б) Использовать ролики, шарики, спирали.
в) Перейти к вращательному движению, использовать центробежную силу.

Патент ФРГ № 1085073. Устройство для вварки труб в трубную решетку, в котором электродами служат катящиеся шарики.

Авторское свидетельство № 262045. Исполнительный орган проходческого комбайна, включающий породоразрушающие электроды, отличающийся тем, что с целью повышения эффективности разрушения крепких горных пород породоразрушающие электроды выполнены в виде свободно вращающихся клиновых роликов, установленных на изолирующей оси.

Авторское свидетельство № 260874. Способ отделения нитей корда от резины, например, в каркасе изношенных покрышек, включающий выдержку покрышки в углеводородах, обработку ее высоконапорными струями жидкости, механическое расчесывание нитей и их обрезку, отличающийся тем, что, с целью повышения производительности труда, обработку покрышки ведут в процессе ее вращения со скоростью, ослабляющей связь между частицами резины.

ПРИЕМ 15
ПРИНЦИП ДИНАМИЧНОСТИ

а) Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.
б) Разделить объект на части, способные перемещаться относительно друг друга.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.87 имеет подпункт: в) Если объект в целом неподвижен, сделать его подвижным, перемещающимся.)

Авторское свидетельство № 317390. Ласта плавательная резиновая, отличающаяся тем, что, с целью обеспечения регулирования жесткости ее рабочей лопасти для различных по скорости и длительности плавания режимов, она имеет внутренние продольные полости, весь объем которых заполнен инертной несжимаемой жидкостью, статическое давление которой по необходимости изменяется на берегу или под водой.

Авторское свидетельство № 161247. Транспортное судно, корпус которого имеет цилиндрическую форму, отличающееся тем, что, с целью уменьшения осадки судна при полной загрузке, его корпус выполнен из двух раскрывающихся, шарнирно сочлененных полуцилиндров.

Патент СССР № 174748. Автомобиль с шарнирно соединенными секциями рамы, которые могут поворачиваться при помощи гидроцилиндров. Такой автомобиль обладает повышенной проходимостью.

Авторское свидетельство № 162580. Способ изготовления полых кабелей с каналами, образованными трубками, скрученными с токоведущими жилами, с предварительным заполнением трубок веществом, удаляемым из них после изготовления кабеля. Чтобы упростить технологию, в качестве заполняющего вещества применяют парафин, который после изготовления кабеля расплавляют и выливают из трубок.

ПРИЕМ 16
ПРИНЦИП ЧАСТИЧНОГО ИЛИ ИЗБЫТОЧНОГО РЕШЕНИЯ
Если трудно получить 100% требуемого эффекта, надо получить "чуть меньше" или "чуть больше". Задача при этом может существенно упроститься.

Рис. 17
Принцип избыточного действия: чтобы подавать порошок по трубке 1 равномерно, его насыпают в воронке 2 с избытком; лишний порошок высыпается в бункер 3, а воронка всегда заполнена до краев.

Авторское свидетельство № 181897. Способ борьбы с градом, основанный на кристаллизации с помощью реагента (например йодистого серебра) градового облака, отличающийся тем, что, с целью резкого сокращения расхода реагента и средств его доставки, осуществляют кристаллизацию не всего облака, а крупнокапельной (локально) его части.

Авторское свидетельство № 262333. Устройство для дозирования металлических порошков, содержащее бункер с дозатором, отличающееся тем, что, с целью обеспечения равномерной подачи порошка к дозатору, бункер снабжен внутренней приемной воронкой и каналом с электромагнитным насосом для подачи (с избытком) порошка к воронке (см. Рис. 17).

ПРИЕМ 17
ПРИНЦИП ПЕРЕХОДА В ДРУГОЕ ИЗМЕРЕНИЕ

а) Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (то есть на плоскости). Соответственно, задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.
б) Многоэтажная компоновка объектов вместо одноэтажной.
в) Наклонить объект или положить его "набок".
г) Использовать обратную сторону данной площади.
д) Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

Авторское свидетельство № 150938. Полупроводниковый диод, отличающийся тем, что, с целью увеличения мощности диода, в нем применен профилированный электронно-дырочный переход и профилированный омический контакт без увеличения периметра полупроводниковой пластины. Переход от плоского контакта к объемному позволяет при прежних габаритах диода получить большую площадь пластины полупроводника и, следовательно, большую мощность, снимаемую с электронно-дырочного перехода.

Известный советский изобретатель Д. Киселев, долгое время работавший над совершенствованием долота для бурения нефтяных скважин, рассказывает в своей книге "Поиски конструктора": "В долоте также каждый подшипник обладает определенной грузоподъемностью, и если увеличить их число, дать меньшую нагрузку каждому, можно улучшить условия их работы, предотвратить износ. Именно по этому пути шла все время моя мысль в поисках различных схем размещения подшипников. Но мешали габариты долота, малое пространство, на котором я имел возможность располагать необходимое мне количество шариков и роликов. Теперь же я вдруг увидел решение, вот оно, рядом. На одном и том же участке поверхности можно разместить большее количество "элементов" подшипников в два яруса, как размещаются люди и вещи в купе пассажирских вагонов. Я даже рассмеялся: так просто было это решение, тщетно разыскиваемое много месяцев".

Авторское свидетельство № 180555. Способ механизации обмена вагонеток в горизонтальном проходческом забое, отличающийся тем, что, с целью устранения подрыва кровли и устройства разъездов, обмен груженых вагонеток на порожние производят посредством перенесения порожней вагонетки с возможным поворотом ее на угол 90 над составом под погрузку.

Авторское свидетельство № 259449. Устройство для магнитографической дефектоскопии, отличающееся тем, что, с целью повышения срока службы, кольцевая магнитная лента выполнена с двусторонним магниточувствительным покрытием и изогнута в виде листа Мёбиуса.

Авторское свидетельство № 244783. Теплица для круглогодичного выращивания овощных культур, отличающаяся тем, что, с целью улучшения светового режима растений за счет использования солнечных лучей, она снабжена вогнутым отражательным экраном, установленным поворотно с северной стороны теплицы.

ПРИЕМ 18
ИСПОЛЬЗОВАНИЕ МЕХАНИЧЕСКИХ КОЛЕБАНИЙ
а) Привести объект в колебательное движение.
б) Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой).
в) Использовать резонансную частоту.
г) Применить вместо механических вибраторов пьезовибраторы.
д) Использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Авторское свидетельство № 220380. Способ вибродуговой наплавки и сварки деталей под слоем флюса с низкочастотными колебаниями электрода, отличающийся тем, что, с целью повышения качества наплавленного металла, на низкочастотные колебания накладывают высокочастотные ультразвуковые колебания порядка, например, 20 кГц.

Авторское свидетельство № 307896. Способ безопилочного резания древесины при помощи изменяющего свои геометрические размеры режущего инструмента, отличающийся тем, что, с целью снижения усилия внедрения инструмента в древесину, резание осуществляют инструментом, частота импульсов которого близка к собственной частоте колебаний перерезаемой древесины.

Патент США № 3239283. Трение покоя резко снижает чувствительность тонких приборов, мешает стрелкам, маятникам и другим подвижным частям легко поворачиваться в подшипниках. Чтобы избежать этого, подшипники заставляют вибрировать, и элементы прибора все время совершают осциллирующее движение относительно друг друга. В качестве источника вибрации обычно используют электромотор. При этом кинематика прибора существенно усложняется, а вес увеличивается. Американские изобретатели Джон Броз и Вильям Лаубендорфер разработали конструкцию подшипника, в котором втулки выполняются из пьезоэлектрического материала и с обеих сторон покрываются тонкой электропроводной фольгой. К фольге припаиваются электроды, по которым подводится переменный ток, создающий вибрацию.

ПРИЕМ 19
ПРИНЦИП ПЕРИОДИЧЕСКОГО ДЕЙСТВИЯ
а) Перейти от непрерывного действия к периодическому (импульсному).
б) Если действие уже осуществляется периодически - изменить периодичность.
в) Использовать паузы между импульсами для другого действия.

Авторское свидетельство № 267772. Известен способ исследования процесса дуговой сварки с использованием дополнительного осветителя. Однако при дополнительном освещении наряду с улучшением видимости твердого и жидкого материала, находящегося в области дуги, ухудшается видимость плазменно-газовой фазы столба дуги (явно техническое противоречие!). Предложенный способ отличается тем, что яркость дополнительного осветителя периодически изменяют от нуля до величины, превышающей яркость дуги. Это позволяет совместить наблюдение как за самой дугой, так и за процессом плавления электрода и переноса металла.

Авторское свидетельство № 302622. Способ контроля исправности термопары путем подогрева ее и проверки наличия в цепи э.д.с., отличающийся тем, что, с целью уменьшения времени контроля, нагревают термопару периодическими импульсами тока, а в промежутки времени между импульсами проверяют наличие термо э.д.с.

ПРИЕМ 20
ПРИНЦИП НЕПРЕРЫВНОСТИ ПОЛЕЗНОГО ДЕЙСТВИЯ

а) Вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).
б) Устранить холостые и промежуточные ходы.

Авторское свидетельство № 126440. Способ многоствольного бурения скважин двумя комплектами труб. При одновременном бурении двух-трех скважин применяется ротор с несколькими стволами, включаемыми в работу независимо друг от друга, и два комплекта бурильных труб, поочередно поднимаемых и опускаемых в скважины для смены отработанных долот. Операции по смене долот совмещаются во времени с автоматическим бурением в одной из скважин.

Авторское свидетельство № 268926. Способ транспортировки сахара-сырца на судах, отличающийся тем, что, с целью снижения стоимости транспортировки путем утилизации свободных пробегов, используют танкеры, которые после разгрузки от нефтепродуктов или других жидких грузов, очистки и обработки моющими средствами загружают сахаром-сырцом.

ПРИЕМ 21
ПРИНЦИП ПРОСКОКА
Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

ПРИМЕРЫ
Авторское свидетельство № 241484. Способ скоростного нагрева металлических заготовок в потоке газа, отличающийся тем, что, с целью повышения производительности и уменьшения обезуглероживания, газ подают со скоростью не менее 200 м/с, при сохранении потока постоянным на всем протяжении его контакта с заготовками.

Авторское свидетельство № 112889. При разгрузке палубного лесовоза его накреняют с помощью судна-кренователя. Чтобы в воду свалился весь лес, приходиться создавать большой крен лесовоза, а это опасно. Предлагаемый способ состоит в том, что лесовоз быстро (рывком) накреняют на небольшой угол. Возникает динамическая нагрузка, и лес разгружается при небольшом угле крена.

Патент ФРГ № 1134821. Устройство для разрезания тонкостенных пластмассовых труб большого диаметра. Особенность устройства - нож рассекает трубу так быстро, что она не успевает деформироваться.

ПРИЕМ 22
ПРИНЦИП "ОБРАТИТЬ ВРЕД В ПОЛЬЗУ"

а) Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.
б) Устранить вредный фактор за счет сложения с другим вредным фактором.
в) Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

ПРИМЕРЫ
Член-корреспондент Академии наук СССР П. Вологдин в статье "Путь ученого" ("Ленинградский альманах", 1953, № 5) писал, что еще в двадцатых годах он задался целью применить токи высокой частоты для нагрева металла. Опыты показали, что металл нагревается лишь с поверхности. Ток высокой частоты никак не удавалось "загнать" в глубь заготовки, и опыты прекратили. Впоследствии Вологдин не раз сожалел, что не использовал этот "отрицательный эффект": промышленность могла бы получить метод высокочастотной закалки стальных деталей на много лет раньше, чем он был предложен в действительности.

По-иному сложилась судьба другого выдающегося изобретения - электроискровой обработки металла.

Б.Р. Лазаренко и И.Н. Лазаренко работали над проблемой борьбы с электроэрозией металлов. Электрический ток "разъедал" металл в месте соприкосновения контактов реле, и с этим ничего не удавалось сделать. Были испробованы твердые и сверхтвердые сплавы - и все безрезультатно. Исследователи пытались помещать контакты в различные жидкости, но разрушение шло еще интенсивнее.

Однажды изобретатели поняли, что этот "отрицательный эффект" можно где-то применить с пользой, и вся работа теперь пошла в другом направлении. 3 апреля 1943 года изобретатели получили авторское свидетельство на электроискровой способ обработки металла.


Сам по себе этот принцип прост: надо допустить то, что кажется недопустимым, - пусть случится! Но тут мысль изобретателя часто наталкивается на психологический барьер...

ПРИЕМ 23
ПРИНЦИП ОБРАТНОЙ СВЯЗИ
а) Ввести обратную связь.
б) Если обратная часть есть - изменить ее.

ПРИМЕРЫ
Авторское свидетельство № 283997. Внутри градирни ветер образует циркуляционные зоны, что снижает глубину охлаждения воды. Чтобы повысить эффективность охлаждения, в секциях градирни устанавливают температурные датчики и по их сигналам автоматически изменяют количество подаваемой воды.

Авторское свидетельство № 167229. Способ автоматического запуска конвейера, отличающийся тем, что, с целью экономии электроэнергии, потребляемой в момент запуска конвейерного двигателя, измеряют мощность, потребляемую двигателем конвейера во время работы, фиксируют ее в момент остановки конвейера и полученный сигнал, обратно пропорциональный весу материала на конвейере, подают на пусковой двигатель в момент запуска конвейера.

Авторское свидетельство № 239245. Способ автоматического регулирования процесса ректификации путем воздействия на расход орошения в колонну в зависимости от температуры и давления на выходе продукта, отличающийся тем, что, с целью стабилизации содержания одного из компонентов в трехкомпонентной смеси, дополнительно вводят коррекцию по удельному весу выходного продукта.

ПРИЕM 24
ПРИНЦИП "ПОСРЕДНИКА"

Использовать промежуточный объект-переносчик.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.89:
а) Использовать промежуточный объект, переносящий или передающий действие.
б) На время присоединить к объекту другой (легко удаляемый) объект.)

ПРИМЕРЫ
Авторское свидетельство № 177436. Способ подвода электрического тока в жидкий металл, отличающийся тем, что, с целью снижения электрических потерь, ток к основному металлу подводят охлаждаемыми электродами через промежуточный жидкий металл, температура плавления которого ниже, а плотность и температура кипения выше, чем у основного металла.

Авторское свидетельство № 178005. Способ нанесения летучего ингибитора атмосферной коррозии на защищаемую поверхность, отличающийся тем, что, с целью получения равномерного покрытия внутренних поверхностей сложных деталей, через последние продувают нагретый воздух, насыщенный парами ингибитора.


ПРИЕМ 25
ПРИНЦИП САМООБСЛУЖИВАНИЯ

а) Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.
б) Использовать отходы (энергии, вещества).

ПРИМЕРЫ
Авторское свидетельство № 261207. Дробеметный аппарат, корпус которого облицован изнутри износоустойчивыми плитами, отличающийся тем, что, с целью повышения стойкости облицовки, плиты выполнены в виде магнитов, удерживающих на своей поверхности защитный слой дроби. На стенках дробемета возникает, таким образом, постоянно обновляемый защитный слой дроби.

Авторское свидетельство № 307584. Способ сооружения каналов оросительных систем из сборных элементов, отличающийся тем, что, с целью упрощения транспортировки изделий после монтажа начального участка канала, его торцы закрывают временными диафрагмами, готовый участок канала затопляют водой и последующие элементы, также закрытые с торцов временными диафрагмами, сплавляют по этому участку канала.

Авторское свидетельство № 108625. Способ охлаждения полупроводниковых диодов, отличающийся тем, что, с целью улучшения условий теплообмена, применяется полупроводниковый термоэлемент, рабочим током которого является ток, проходящий через диод в прямом направлении.

ПРИЕМ 26
ПРИНЦИП КОПИРОВАНИЯ

а) Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.
б) Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).
в) Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым.

ПРИМЕРЫ
Авторское свидетельство № 86560. Наглядное учебное пособие по геодезии, выполненное в виде написанного на плоскости художественного панно, отличающееся тем, что, с целью последующей геодезической съемки с панно изображения местности, оно выполнено по данным тахеометрической съемки и в характерных точках местности снабжено миниатюрными геодезическими рейками.

Иногда необходимо (для измерения или контроля) совместить два объекта, которые физически совместить невозможно. В этих случаях целесообразно применять оптические копии. Так была, например, решена задача пространственных измерений на рентгеновских снимках. Обычный рентгеновский снимок не позволяет определить, на каком расстоянии от поверхности тела находиться очаг заболевания. Стереоскопические снимки дают объемное изображение, но и в этом случае измерения приходится вести на глаз: ведь внутри тела нет масштабной линейки! Нужно, таким образом, "совместить несовместимое": тело человека, подвергнутого просвечиванию, и масштабную линейку.

Новосибирский изобретатель Ф.И. Аксенов решил эту задачу, применив метод оптического совмещения. По способу Ф.И. Аксенова стереоскопические рентгеновские снимки совмещаются со стереоскопическими же снимками решетчатого куба. Рассматривая в стереоскоп совмещенные снимки, врач видит "внутри" больного решетчатый куб, играющий роль пространственного масштаба.

Вообще, во многих случая выгоднее оперировать не с объектами, а с их оптическими копиями. Например, канадская фирма "Крютер Палп" пользуется специальной фотоустановкой для обмера бревен, перевозимых на железнодорожных платформах. По данным фирмы, фотографический обмер балансов раз в 50-60 быстрее ручного, отклонение же результатов фотообмера от данных точного подсчета не превышает 1-2%.

Еще один интересный ПРИМЕР:

Авторское свидетельство № 180829 - новый способ контроля поверхности внутренних полостей сферических деталей. В деталь наливают малоотражающую жидкость и, последовательно меняя ее уровень, производят фотографирование на один и тот же кадр цветной пленки. На снимке получаются концентрические окружности. Сравнивая после увеличения (в проекционной системе) полученные этим способом линии с теоретическими линиями чертежа, с большой точностью определяют величину отклонения формы детали.

ПРИЕМ 27
ДЕШЕВАЯ НЕДОЛГОВЕЧНОСТЬ ВЗАМЕН ДОРОГОЙ ДОЛГОВЕЧНОСТИ
Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

ПРИМЕРЫ
Правила асептики требуют, чтобы кипячение шприца с иглами для инъекции продолжалось не менее 45 минут. Между тем во многих случаях бывает необходимо ввести лекарство как можно быстрее. Во Всесоюзном научно-исследовательском институте медицинских инструментов и оборудования создан шприц-тюбик для одноразового использования. Это тонкостенный сосуд из пластмассы, на горловине которого укреплена стерильная игла, защищенная колпачком. Корпус шприца-тюбика в заводских условиях заполняется лекарственным препаратом и запаивается. Такой шприц можно привести в готовность буквально за считанные доли секунды - для этого достаточно лишь снять колпачок, прикрывающий иглу. Во время инъекции лекарство из тюбика выдавливается, после чего использованный шприц-тюбик выбрасывают.

Патент США № 3430629. Пеленка одноразового использования. Содержит наполнитель типа промокашки.

Существует много патентов такого типа: на одноразовые термометры, мусорные мешки, зубные щетки и т.д.

ПРИЕМ 28
ЗАМЕНА МЕХАНИЧЕСКОЙ СХЕМЫ

а) Заменить механическую систему оптической, акустической или "запаховой".
б) Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.
в) Перейти от неподвижных полей к движущимся, от фиксированных - к меняющимся по времени, от неструктурных - к имеющим определенную структуру.
г) Использовать поля в сочетании с ферромагнитными частицами.

Рис. 20
В этой винтовой паре гайка движется без трения, за счет взаимодействия электромагнитных полей.

Авторское свидетельство № 163559. Способ контроля износа породоразрушающего инструмента, например буровых долот, отличающийся тем, что, с целью упрощения контроля, в качестве сигнализации износа применяют монтируемые в болота ампулы с резко пахучими химическими веществами, например с этилмеркаптаном.

Авторское свидетельство № 154459. Неизнашиваемая винтовая пара (Рис. 20). Винтовая пара состоит из винта 1, в резьбу которого уложена обмотка 2, и гайки 3 с обмоткой 4. Винт и гайка расположены с зазором между ними. Гайка 3 жестко связана с подвижным узлом станка или прибора. При прохождении тока по обмоткам 2 и 4 вокруг них создаются электромагнитные поля. Замыкание этих полей происходит соответственно через гайку и винт, причем магнитный поток достигает максимальной величины при совмещении витков винта и гайки.

При вращении винта магнитный поток между сместившимися один относительно другого витками обмоток винта и гайки искривляется и, как следствие, возникает усилие, стремящееся восстановить первоначальное взаимное расположение витков. Это усилие и будет вызывать поступательное перемещение гайки с подвижным узлом.

Наличие зазора между винтом и гайкой позволяет значительно продлить срок службы винтовой пары, сделать их практически неизнашиваемыми.

"На одном заводе делали сверхъювелирную по тонкости работу: шлифовали стенки отверстия диаметром в полмиллиметра.

Для такой операции изготовили миниатюрный шлифовальник диаметром в две десятых миллиметра, осыпанный алмазной пылью.

Инструмент этот вращала пневматическая турбина со скоростью 1000 оборотов в секунду! Кроме того, шлифовальник двигался по контуру отверстия, обходя его каждую минуту 150 раз. Рабочий был не в силах проникнуть взглядом в зону обработки, не мог уловить момент, когда крохотный инструмент касался детали. Рабочий то затягивал процесс обработки, то кончал его слишком рано, в обоих случаях детали шли в брак.

Собирались уже конструировать уникальный станок-автомат. Но изобретательская мысль нашла простой выход: деталь изолировали от станка, присоединили к ней один полюс электробатарейки, а другой полюс подвели к станку. В цепь включили усилитель и громкоговоритель. Теперь, как только инструмент касался детали, громкоговоритель "вскрикивал". Кричащий станок издавал звуки, по которым можно было судить и о том, когда началась шлифовка, и о том, как она проходит, - тональность звука менялась".

Авторское свидетельство № 261372. Способ проведения процессов, например каталитических, в системах с движущимся катализатором, отличающийся тем, что, с целью расширения области применения, создают движущееся магнитное поле и применяют катализатор с ферромагнитными свойствами.

Авторское свидетельство № 144500. Способ интенсификации теплообмена в трубчатых элементах поверхностных теплообменников... отличающийся тем, что, с целью повышения коэффициента теплоотдачи, в поток теплоносителя вводят ферромагнитные частицы, перемещающиеся под действием вращающегося магнитного поля преимущественно у стенок теплообменника, для разрушения и турбулизации пограничного слоя.

Французский патент № 1499276. После обработки деталей в галтовочных барабанах или вибрационных установках детали нужно отделить от абразивных зерен. Если детали крупные, это сделать нетрудно, если они ферромагнитные, их можно выловить на магнитных сепараторах. Но если детали не обладают магнитными свойствами, а по размерам не отличаются от абразивных зернышек? По данному изобретению задача решается тем, что абразиву придают магнитные свойства. Это можно сделать спрессовыванием или спеканием смеси абразивных зерен и магнитных частиц - стружек, крупинок и т.п., а также внедрением их в поры абразивов.


ПРИЕМ 29
ИСПОЛЬЗОВАНИЕ ПНЕВМО- И ГИДРОКОНСТРУКЦИЙ

Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные.

Рис. 21
Вместо массивной дымовой трубы - ажурное сооружение: полая спираль, имеющая на витках сопла, через которые подается сжатый воздух, образующий "стенку".

Авторское свидетельство № 243809.Цель изобретения - улучшение тяги и увеличение высоты рассеивания отводимых газов. Это достигается тем, что корпус трубы (Рис. 21) образован конической спиралью 1, полые витки которой имеют сопла 2 и соединены с полыми опорами 3, свободные концы которых, в свою очередь, присоединены к компрессору 4.

При включении компрессора 4 воздух, поднимаясь под давлением по опорам 3, попадает на спиральные витки корпуса и, вырываясь из сопел 2, создает воздушную "стенку".

Авторское свидетельство № 312630. Способ окраски крупногабаритных изделий распылением с удалением паров растворителя и окрасочного тумана через вентиляционную засасывающую систему, отличающийся тем, что, с целью уменьшения производственных площадей, вокруг окрашиваемого изделия создают восходящую на высоту, превышающую высоту изделия, воздушную завесу, верхние концы которой завихряют посредством напольной вентиляционной засасывающей системы.

Изобретение это преодолевает такое же техническое противоречие, что и в предыдущем случае. Поэтому похожи и решения: пневмостенка вместо жесткой трубообразной ограды.

Авторское свидетельство № 264675. Опора для сферического резервуара, включающая основание, отличающаяся тем, что, с целью снижения напряжения в оболочке резервуара, основание опоры выполнено в виде заполненного жидкостью сосуда с вогнутой крышкой из эластичного материала, принимающей форму опираемой на нее оболочки резервуара.

А вот двойник этого изобретения - авторское свидетельство № 243177. Устройство для передачи усилий от опоры копра на фундамент, отличающийся тем, что, с целью обеспечения равномерности передачи давления на фундамент, оно выполнено в виде плоского замкнутого сосуда, заполненного жидкостью.

ПРИЕМ 30
ИСПОЛЬЗОВАНИЕ ГИБКИХ ОБОЛОЧЕК И ТОНКИХ ПЛЕНОК

а) Вместо обычных конструкций использовать гибкие оболочки и тонкие пленки.
б) Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

ПРИМЕРЫ
Чтобы уменьшить потери влаги, испаряющейся через листья деревьев, американские исследователи опрыскивают их полиэтиленовым "дождем". На листьях создается тончайшая пластмассовая пленка. Растение, укрытое пластмассовым одеялом, развивается нормально благодаря тому, что полиэтилен значительно лучше пропускает кислород и углекислый газ, чем пары воды.

Авторское свидетельство № 312826. Способ экстракции в системе жидкость - жидкость, отличающийся тем, что, с целью интенсификации процесса массообмена, струю одной фазы подают через слой газа на поверхность другой фазы, перемещаемой пленкой по твердой поверхности.


ПРИЕМ 31
ПРИМЕНЕНИЕ ПОРИСТЫХ МАТЕРИАЛОВ
а) Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. п.)
б) Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Машины всегда строились из плотных (непроницаемых) материалов. Инерция мышления приводит к тому, что задачи, легко решаемые при использовании пористых материалов, зачастую пытаются решить введением специальных устройств и систем, сохраняя все элементы конструкции непроницаемыми. Между тем высокоорганизованной машине присуща проницаемость - примером может служить любой живой организм, начиная с клетки и кончая человеком.

Внутреннее перемещение вещества - одна из важных функций многих машин. "Грубая" машина осуществляет эту функцию с помощью труб, насосов и т.п., "тонкая" машина - с помощью пористых материалов и молекулярных сил.

ПРИМЕРЫ
Авторское свидетельство № 262092. Способ защиты внутренних поверхностей стенок емкости от отложений твердых и вязких частиц из находящегося в емкости продукта, отличающийся тем, что, с целью повышения эффективности защиты и снижения энергозатрат внутрь емкости, изготовленной из пористого материала, подают через ее стенки не образующую отложений жидкость под давлением, превосходящим давление внутри емкости.

Авторское свидетельство № 283264. Способ внесения добавок в жидкий металл с помощью огнеупорных материалов, отличающийся тем, что, с целью улучшения режима внесения добавок, в металл погружают пористый огнеупор, предварительно пропитанный материалом добавки.

Авторское свидетельство № 187135. Система испарительного охлаждения электрических машин, отличающаяся тем, что, с целью исключения необходимости подвода охлаждающего агента к машине, активные части и отдельные конструктивные элементы ее выполнены из пористых материалов, например пористых порошковых сталей, пропитанных жидким охлаждающим агентом, который при работе машины испаряется и таким образом обеспечивает кратковременное, интенсивное и равномерное ее охлаждение.


ПРИЕМ 32
ПРИНЦИП ИЗМЕНЕНИЯ ОКРАСКИ

а) Изменить окраску объекта или внешней среды.
б) Изменить степень прозрачности объекта или внешней среды.
в) Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.
г) Если такие добавки уже применяются, использовать меченые атомы.

ПРИМЕРЫ
В кузнечных и литейных цехах, на металлургических заводах, всюду, где необходимо защитить рабочих от действия жары, применяют водяные завесы. Такие завесы отлично защищают рабочих от невидимых тепловых (инфракрасных) лучей, однако слепяще-яркие лучи от расплавленного металла беспрепятственно проходят сквозь тонкую жидкую пленку. Чтобы защитить рабочих от них, сотрудники польского Института охраны труда предложили окрашивать воду, из которой создается водяная завеса, - оставаясь прозрачной, она полностью задерживает тепловые лучи и в нужной степени ослабляет силу видимого излучения.

Авторское свидетельство № 165645. В фиксирующий раствор вводят краситель, который обратимо абсорбируется фотографическим слоем и не закрашивает подложку-бумагу или целлулоид. Краситель при последующей промывке водой должен удаляться из слоя. Скорость вымывания красителя из фотографического слоя примерно равна скорости вымывания тиосульфата натрия или несколько меньше ее. Обесцвечивание фотографического изображения свидетельствует о полноте промывки слоя от остатков солей, при помощи которых производилось фиксирование фотографического материала.


ПРИЕМ 33
ПРИНЦИП ОДНОРОДНОСТИ

Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

ПРИМЕРЫ
Патент ФРГ № 957599. Литейный желоб для обработки расплавленного металла звуком или ультразвуком с помощью звукоизлучателя, помещенного в расплавленный металл, отличающийся тем, что находящаяся в соприкосновении с расплавленным металлом часть звукоизлучателя выполнена из того же металла, что и обрабатываемый металл, или из одного из его легирующих компонентов, и частично расплавляется этим расплавленным металлом, а остальная часть звукоизлучателя принудительно охлаждается и остается прочной.

Авторское свидетельство № 234800. Способ смазывания охлаждаемого подшипника скольжения, отличающийся тем, что, с целью улучшения смазывания при повышенных температурах, в качестве смазывающего вещества берут тот же материал, что и материал вкладыша подшипника.

Авторское свидетельство № 180340. Способ очистки газов от пыли, содержащей расплавленные частицы, отличающийся тем, что, с целью повышения эффективности процесса, исходные газы барботируют в среде, образованной при слиянии этих же частиц в расплав.

Авторское свидетельство № 259298. Способ сварки металлов, при котором свариваемые кромки устанавливают с зазором и подают в него присадочный материал с последующим нагревом свариваемых кромок, отличающийся тем, что, с целью улучшения сварки, в качестве присадочного материала используют летучие соединения тех же металлов, что и свариваемые.

ПРИЕМ 34
ПРИНЦИП ОТБРОСА И РЕГЕНЕРАЦИИ ЧАСТЕЙ
а) Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. д.) или видоизменена непосредственно в ходе работы.
б) Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

ПРИМЕРЫ
Патент США № 3174550. При аварийной посадке самолета бензин вспенивают с помощью специальных химических веществ, переводя его в негорючее состояние.

Патент США № 3160950. Чтобы при резком старте ракеты не пострадали чувствительные приборы, их погружают в пенопласт, который, выполнив роль амортизатора, быстро испаряется в космосе.

Нетрудно заметить, что этот принцип - дальнейшее развитие принципа динамизации: объект изменяется в процессе действия, но изменяется сильнее. Самолет с меняющейся в полете геометрией крыла - это принцип динамизации. Ракета, отбрасывающая отработанные ступени, - принцип отброса.

А вот изобретения-близнецы.

Авторское свидетельство № 222322. Способ изготовления винтовых микропружин, отличающийся тем, что, с целью повышения производительности, оправку выполняют из эластичного материала и удаляют путем погружения ее вместе с пружиной в состав, растворяющий эластичный материал.

Авторское свидетельство № 235979. Способ изготовления резиновых шаров-разделителей, отличающийся тем, что, с целью придания шару необходимых размеров, ядро формируют из смеси измельченного мела с водой с последующей просушкой и разрушением твердого ядра после вулканизации жидкостью, вводимой с помощью иглы.

Авторское свидетельство № 159783. Способ производства полых профилей, отличающийся тем, что, с целью получения разнообразных по размерам и форме профилей на сортовых станах, прокатке подвергают сварные пакеты, наполненные огнеупорным материалом, например, магнезитовым порошком, с последующим удалением наполнителя.

Можно привести сотни подобных изобретений. Трудно представить, сколько времени потеряли изобретатели на поиски, каждый раз отыскивая идею "с нуля". А ведь здесь один типовой прием: изготавливай объект А на оправке Б, которую можно удалить растворением, испарением, плавлением, химической реакцией и т.д.

Антипод принципа отброса - принцип регенерации.

Авторское свидетельство № 182492. Способ компенсации износа непрофилированного электрода-инструмента при электроэрозионной обработке токопроводящих материалов, отличающийся тем, что, с целью увеличения срока службы электрода-инструмента, на его рабочую поверхность в процессе обработки непрерывно напыляют слой металла.

Авторское свидетельство № 212672. При гидротранспортировании кислых гидросмесей с абразивными материалами внутренние стенки трубопроводов быстро изнашиваются. Защита их футеровки сложна, трудоемка, ведет к увеличению наружного диаметра труб. Описываемый способ защиты труб предусматривает образование на внутренних стенках трубы защитного слоя (гарниссажа). Для этого в транспортируемую гидросмесь периодически вводят известковый раствор. Таким образом, внутренние стенки трубопровода всегда защищены от износа, а сечение трубопровода уменьшается незначительно, так как гарниссаж изнашивается под действием абразивной кислой смеси.


ПРИЕМ 35
ИЗМЕНЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА

а) Изменить агрегатное состояние объекта.
б) Изменить концентрацию или консистенцию.
в) Изменить степень гибкости.
г) Изменить температуру.

ПРИМЕРЫ
Авторское свидетельство № 265068. Способ проведения массообменных процессов в системе газ-вязкая жидкость, отличающийся тем, что, с целью интенсификации процесса, вязкую жидкость перед подачей в аппарат предварительно газируют.

ПРИЕМ 36
ПРИМЕНЕНИЕ ФАЗОВЫХ ПЕРЕХОДОВ
Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.

ПРИМЕРЫ
Авторское свидетельство № 190855. Способ изготовления ребристых труб, заключающийся в раздаче заглушенных труб водой, подаваемой под давлением, отличающийся тем, что, с целью удешевления и ускорения процесса изготовления, поданную под давлением воду замораживают.

Может возникнуть вопрос: чем прием № 36 отличается от приемов № 35-а (изменение агрегатного состояния) и № 15 (принцип динамичности)? Прием № 35-а заключается в том, что вместо агрегатного состояния А объект используют в агрегатном состоянии Б и именно за счет особенностей состояния Б получают нужный результат.

Суть приема № 15 в том, что мы пользуемся то свойствами, присущими состоянию А, то свойствами, присущими состоянию Б.

При использовании приема № 36 задача решается за счет явлений, связанных с переходом от А к Б или обратно. Если, например, мы наполним трубу не водой, а льдом, ничего с трубой не произойдет. Требуемый эффект достигается за счет увеличения объема воды при замерзании.

Авторское свидетельство № 225851. Способ охлаждения различных объектов с помощью циркулирующего по замкнутому кругу жидкого теплоносителя, отличающийся тем, что, с целью уменьшения количества циркулирующего теплоносителя и снижения энергетических затрат, часть теплоносителя переводят в твердую фазу и охлаждение ведут полученной смесью.

"Фазовый переход" - понятие более широкое, чем "изменение агрегатного состояния". К фазовым переходам, в частности, относятся и изменения кристаллической структуры вещества. Так, олово может существовать в виде белого олова (плотность 7,31) и серого олова (плотность 5,75). Переход - при 18 С - сопровождается резким увеличением объема (значительно большим, чем при замерзании воды; поэтому усилия здесь могут быть получены намного большие).

Полиморфизм (кристаллизация в нескольких формах) присущ многим веществам. Явления, сопровождающие полиморфные переходы, могут быть использованы при решении самых различных изобретательских задач. Например, в патенте США № 3156974 используются полиморфные трансформации висмута и церия.


ПРИЕМ 37
ПРИМЕНЕНИЕ ТЕРМИЧЕСКОГО РАСШИРЕНИЯ

а) Использовать термическое расширение (или сжатие) материалов.
б) Если термическое расширение уже используется, применить несколько материалов с разными коэффициентами термического расширения.

ПРИМЕРЫ
Авторское свидетельство № 309758. Способ волочения труб на подвижной оправке при пониженных температурах, отличающийся тем, что, с целью создания зазора между трубой и оправкой после волочения для извлечения последней из трубы без обкатки, в охлажденную трубу перед волочением вводят предварительно подогретую, например, до температуры 50-100 С оправку, извлечение которой после деформации производят после выравнивания температур трубы и оправки.

Авторское свидетельство № 312642. Заготовка для горячего прессования многослойных изделий, выполненных в виде концентрично расположенных втулок, изготовленных из различных материалов, отличающаяся тем, что, с целью получения многослойных изделий с напряженными слоями, каждая втулка изготовлена из материала, имеющего температурный коэффициент линейного расширения выше температурного коэффициента линейного расширения материала втулки, расположенной внутри нее.

Смысл приема - в переходе от "грубого" движения на макроуровне к "тонкому" движению на молекулярном уровне. С помощью термического расширения можно создавать большие усилия и давления. Термическое расширение позволяет очень точно "дозировать" движение объекта.

Авторское свидетельство № 242127. Устройство для микроперемещения рабочего объекта, например кристаллодержателя с затравкой, отличающееся тем, что, с целью обеспечения максимальной плавности, оно содержит два стержня, подвергаемых электронагреву и охлаждению по заданной программе, находящихся в закрепленных на суппортах термостатируемых камерах и поочередно перемещающих объект в нужном направлении.


ПРИEM 38
ПРИМЕНЕНИЕ СИЛЬНЫХ ОКИСЛИТЕЛЕЙ

а) Заменить обычный воздух обогащенным.
б) Заменить обогащенный воздух кислородом.
в) Воздействовать на воздух или кислород ионизирующими излучениями.
г) Использовать озонированный кислород.
д) Заменить озонированный (или ионизированный) кислород озоном.

Основная цель этой цепи приемов - повысить интенсивность процессов. В качестве примеров можно назвать способ спекания и обжига дисперсного материала с применением интенсификации процесса горения путем продувки воздухом, обогащенным кислородом; плазменно-дуговую резку нержавеющих сталей, при которой в качестве режущего газа берут чистый кислород; интенсификацию процесса агломерации руд путем ионизации окислителя и газообразного топлива перед подачей в слой шихты и т.д.


ПРИЕМ 39
ПРИМЕНЕНИЕ ИНЕРТНОЙ СРЕДЫ
а) Заменить обычную среду инертной.
б) Вести процесс в вакууме.
ПРИЕМ 40
ПРИМЕНЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Перейти от однородных материалов к композиционным.

ПРИМЕРЫ
Патент США № 3553820. Легкие прочные тугоплавкие изделия выполнены на основе алюминия и упрочнены множеством покрытых танталом волокон углерода. Такие изделия характеризуются высоким модулем упругости и используются в качестве материалов для конструирования кораблей воздушного и морского флотов.

Композиционные материалы - составные материалы, которые обладают свойствами, не присущими их частям. Например, пористые материалы, о которых шла речь в приеме № 31, представляют собой композицию из твердого вещества и воздуха; ни твердое вещество, ни воздух порознь не обладают теми свойствами, которые есть у пористых веществ.

Композиционные материалы изобретены природой и широко ею используются. Так, древесина представляет собой композицию целлюлозы с лигнином. Волокна целлюлозы обладают высокой прочностью на разрыв, но легко изгибаются. Лигнин связывает их в единое целое и сообщает материалу жесткость.

Интересный композиционный материал представляет сочетание легкоплавкого вещества (например, сплава Вуда) с волокнами тугоплавкого материала (например, стали). Такой материал легко плавиться, а застыв, обладает высокой прочностью. Постепенно происходит взаимная диффузия частиц припоя и волокон, в результате чего образуется сплав с высокой температурой плавления.

Другой композиционный материал - взвесь частиц кремния в масле - способен твердеть в электрическом поле.

Техническое противоречие — это ситуация, при которой улучшение одного свойства, одной части системы приводит к недопустимому ухудшению другого свойства, другой части системы, то есть выигрыш в одном приводит к ухудшению в другом.

Решение творческой задачи есть преодоление технического противоречия . Оно заключается в нахождении некоторого способа преобразования технической системы, причем такого, которое при минимальных изменениях в системе приводило бы к искомому результату без ухудшения ее параметров.

Техническое противоречие возникает между параметрами системы, ее узлами или группами деталей.

Основными признаками технического противоречия является ухудшение каких-либо частей системы при улучшении других. Возникновение нескольких новых технических задач на уровне системы.

Причины – исчерпание возможностей технической системы, неверный выбор места изменения системы, борьба со следствием, а не с причиной.

Последствия – усложнение системы и надсистемы, резкое повышение материальных и других затрат.

Условия разрешения – проведение причинно-следственного анализа, выявление первопричины возникновения нежелательного явления и микрозадачи в подсистеме, определение физического противоречия.

Анализ многих тысяч изобретений выявил, что при всем многообразии технических противоречий большинство из них разрешается 40 основными приемами.

Многообразие встречающихся изобретательских задач, даже принадлежащих разным областям техники, решаются при помощи сходных подходов. Это связано с тем, что лежащие в основе таких задач технические противоречия повторяются.

В приложении 1 приведено содержание типовых приемов устранения технических противоречий.

Чтобы определить, какой прием поможет наиболее успешно справиться с решением задачи, можно прибегнуть к помощи табл. 4.2, чтобы не перебирать последовательно все 40 приемов.

Таблица 4.1

Наиболее часто используемые приемы преодоления

технических противоречий

Параметр, который надо изменить (увеличить, уменьшить,

улучшить) по условию задачи

Номера приемов

(приложение 1)

1. Вес подвижного объекта

2. Вес неподвижного объекта

35, 28, 10, 19, 1, 2

3. Длина подвижного объекта

1, 29, 35, 15, 4

4. Длина неподвижного объекта

35, 28, 14, 1, 26, 3,10,15

5. Площадь подвижного объекта

2, 15, 13, 26, 30, 4

6. Площадь неподвижного объекта

18, 2, 35, 10, 16, 30, 40

7. Объем подвижного объекта

1, 35, 2, 10, 29, 4, 15

8. Объем неподвижного объекта

9. Скорость

28, 35, 13, 10, 19, 34, 38

35, 10, 18, 37, 36, 1

35, 10, 36, 37, 2

10, 15, 1, 14, 32, 34, 35

13. Устойчивость состав объекта

35, 2, 39, 27, 40

14. Прочность

3, 35, 40, 10, 15

15 Продолжительность действия подвижного объекта

19, 35, 3, 10, 27

16. Продолжительность действия неподвижного объекта

35, 1, 10, 16, 40


Температура

35, 19, 2, 22, 39

18. Освещенность

19. Энергия, расходуемая подвижным объектом

35, 19, 18, 28, 2, 15

20. Энергия, расходуемая неподвижным объектом

21. Мощность

22. Потери энергии

7, 2, 35, 6, 18, 19, 38

23. Потери вещества

10, 35, 18, 28, 31

24. Потери информации

25. Потери времени

35, 10, 28, 18, 4, 5

26. Количество вещества

35, 3, 29, 18, 10

27. Надежность

35, 11, 10, 3, 28, 40

28. Точность измерения

29. Точность изготовления

32, 28, 10, 18, 2

30. Вредные факторы, действующие на объект извне

22, 35, 2, 1, 33

31. Вредные факторы, генерируемые самим объектом

18, 35, 2, 1, 39

32. Удобство изготовления

1, 35, 13, 27, 28

33. Удобство эксплуатации

1, 13, 2, 28, 32, 34

34. Удобства ремонта

1, 10, 2, 11, 35

35. Адаптация, универсальность

35, 1, 15, 16, 29

36. Сложность устройства

13, 26, 1, 28, 2, 10

37. Сложность контроля и измерения

28, 35, 16, 26, 27

38. Степень автоматизации

35, 13, 28, 26, 1, 2

39. Производительность

Однако для организации планомерного поиска приёма удобно воспользоваться специально разработанной таблицей (приложение 2), в которой по вертикали располагаются характеристики технических систем, которые по условиям задач требуется улучшить, а по горизонтали – характеристики, которые при этом недоступно ухудшаются. На пересечении граф и строк с наименованием улучшаемой и ухудшаемой характеристик находим номера приемов, позволяющих с наибольшей вероятностью устранить возникшее техническое противоречие. Таблица охватывает около полутора тысяч наиболее часто встречающихся в изобретательской практике технических противоречий.

В предлагаемой вниманию читателей работе А.С. Токарева показано, как одна и та же задача могла бы решаться с помощью каждого из сорока приемов, предложенных Г.С. Альтшуллером. Эти примеры конечно же не претендуют на то, чтобы закрыть реальную проблему защиты крыш от снега, о которой идет речь в работе. Это, в первую очередь, любопытные иллюстрации к приемам, позволяющие рассмотреть и сопоставить механизмы их действия. За многие годы, прошедшие после публикации Г.С. Альтшуллером списка из 40 приемов, накоплен определенный опыт практического использования этого инструмента. В то же время, при изучении приемов они как правило иллюстрируются довольно ограниченным набором технических решений, взятых из различных областей техники. В подавляющем своем большинстве эти решения - иллюстрации были получены их авторами без применения приемов. Эти два фактора (ограниченное число иллюстраций и крайне ограниченное количество примеров реального использования приемов) затрудняют представление совокупности приемов именно как целостного и работающего инструмента. Предлагаемая работа призвана частично устранить этот недостаток. Она может быть полезна преподавателям, позволяя строить объяснение работы всей совокупности методов вокруг одной задачи.
Редактор

Примеры применения приемов
устранения технических противоречий

Токарев А.С.

Московский общественный институт технического творчества
2005/2006
Выпускная работа Часть 2


Разбор задачи с применением инструментов ТРИЗ

***

Одну из значимых частей ТРИЗ составляют приемы устранения технических противоречий (предложены Г.С.Альтшуллером. Подробнее смотри в http://www.altshuller.ru/triz/tools.asp) Приемы были получены путем обобщения решений большого количества задач в технике. Сегодня их применяют не только в технике, но и в бизнесе, рекламе. Рассмотрим использование этого инструмента при решении следующей проблемы.

Проблема: снег, падающий зимой на автостоянку, затрудняет передвижение автомобилей и пешеходов.

Прежде чем применять какие-либо методы решения, следует проблему свести к задаче, так как аналитически решать можно только задачу. Проблема, представляет собой негативное ощущение человека, поставившего ее. Задача же содержит исходные условия и характер результата, который должен быть получен. Поэтому, сначала следует хотя бы в общих чертах определить возможные направления решения проблемы, чтобы впоследствии конкретизировать их вплоть до формулировки задач. В нашем случае возможны следующие направления решения проблемы:

1. Совершенствовать средства передвижения пешеходов и автомобилей. Сейчас есть для пешеходов - лыжи, снегоступы, коньки, снегоходы с мотором; для автотранспорта - зимняя резина, цепи, гусеничный ход. Можно заняться их модернизацией.

2. Убирать или уничтожать упавший снег. Этим сейчас и занимаются дорожные службы в городах. В арсенале - дорожные машины, снегоуборщики, самосвалы, снегоплавильные станции, реагенты. Можно сконцентрировать усилия на их совершенствование.

3. Не допускать падения снега на поверхность дороги или тротуара. Из имеющихся средств - навесы. Улучшению этой, последней, технической системы (ТС) и будет посвящен дальнейший разбор.

Навесы используются для защиты поверхности от падения снега очень давно, но в условиях рыночной экономики к ним предъявляется дополнительное требование - иметь низкую себестоимость. Отсюда можно сформулировать новую, более узкую проблему: при защите автопарковки от падающего снега при использовании навеса приходится тратить деньги на его строительство. Мы получили административное противоречие: требуется снизить себестоимость навеса, но неизвестно, как это сделать. Это еще не задача - нет ни исходных данных, ни характера результата. Для того, чтобы привести это противоречие к технической задаче необходимо конкретизировать условия. Для этого следует описать техническую систему, с которой, или на основе которой, будет вестись разработка решений. Сразу нужно отметить, что получаемые решения не обязательно должны быть похожи на исходную ТС, ведь главной побуждающей силой является решение проблемы, а не модернизация имеющейся ТС.

Для того, чтобы выйти на техническое противоречие, для устранения которого можно будет применить приемы, необходимо предъявить к нашей ТС такие технические требования, которые требовали бы существования ТС в противоположных состояниях одновременно. Одно требование вытекает из главной функции ТС - не пропускать снег на автостоянку. Второе требование - "низкая себестоимость" не является техническим, так как напрямую не относится к технической стороне навеса. Значит надо найти технический эквивалент себестоимости и формулировать противоречие относительно него. В нашем случае возможно несколько вариантов таких эквивалентов. Рассмотрим некоторые из них.

Себестоимость навеса в основном складывается из стоимости материалов и стоимости работ по его постройке. Для обычных конструкций стоимость работ пропорциональна стоимости материалов, к тому же стоимость работ также не является технической характеристикой навеса и формулирование противоречия на ее основе не даст продвижения вперед. Стоимость материалов пропорциональна размеру защищаемой площади автостоянки, которая определяется заказчиком. Обратим внимание на конструкцию, которая состоит из крыши и опор. Площадь крыши также определяется размерами автостоянки. Из оставшихся технических характеристик можно выделить: толщину крыши, количество и расположение опор, площадь сечения опор.

Здесь следует особо подчеркнуть, что выбранная характеристика (например, толщина крыши) будет являться "наживкой", на которую мы будем "ловить" новые идеи, и выбор ее не имеет определяющего значения для решения задачи. В зависимости от выбранной характеристики и предъявленным к ней требованиям решение задачи может пойти по разным путям, но все они должны привести к решениям. Если вдруг выяснится, что в конкретных условиях на выбранную "наживку" реальные идеи "не ловятся", тогда можно выбрать другую (скажем, количество опор на единицу площади навеса), третью и так до полной победы. Более того, как будет показано ниже, получаемые решения часто будут иметь мало общего, как с исходно выбранной характеристикой, так и со структурой исходной ТС вообще.

В нашем случае выберем толщину крыши. Для того, чтобы стоимость материалов крыши была минимальной при определенной площади, ее толщина должна быть минимальна. Таким образом мы заменяем экономический критерий "низкая себестоимость" на техническую характеристику "минимальная толщина крыши".

Теперь можно сформулировать техническое противоречие: если толщину крыши сделать большой, то крыша удержит вес снега, но получится очень дорогой; если толщину крыши сделать маленькой, то она будет дешевой, но не сможет удержать вес снега и разрушится.

Итак, у нас образовалась конфликтующая пара в виде крыши и снега. Поскольку в ТС входит только крыша, то основные изменения будем осуществлять с ней. (В некоторых случаях, снег тоже может стать объектом применения приемов, то есть служить ресурсом для достижения нашей цели - борьбы с вредным давлением толщи снега).

Внимательный читатель заметит в приведенных выкладках еще одну пару противоположностей, касающуюся главной полезной функции крыши, а именно - не пропускать снег и удерживать вес снега. При кажущейся эквивалентности этих понятий существует следующая разница. Запись "удерживать вес снега" предполагает, что снег будет скапливаться и находиться на крыше все время. Запись "не пропускать снег" более общая, так как заранее не предполагает никакого конкретного "поведения" снега, кроме того, она точнее отражает функцию навеса - защита автостоянки, а не удержание снега. Ввиду того, что своей толщиной крыша обязана именно весу снега, который она должна удерживать в рамках традиционного решения, противоречие записано именно с термином "удержать вес снега". В противном случае не будет понятно, зачем нужна толщина, которая обеспечивает крыше прочность. Далее будут предложены примеры использования каждого приема для решения поставленной задачи.

Изложение организовано по следующей схеме: название приема, краткое его содержание, привязка или адаптация содержания приема к рассматриваемой задаче и решение, которое из этого вытекает. Название приемов и их краткое содержание цитируется по работе Г.С. Альтшуллера http://www.altshuller.ru/triz/technique1.asp . Процедура адапации не входит в число рекомендованных Г.С. Альтшуллером и почерпнута из иных методов работы с приемами (метод записной книжки Хефеле). Идеи решений носят оригинальный характер, они были получены автором настоящей работы. Следует отметить, что предлагаемые варианты адаптации и тем более полученные идеи решений не являются единственно возможными, а только одними из вариантов. В реальной практике, мысли, образующиеся в результате применения приемов, будут зависеть от опыта, эрудиции, фантазии, особенностей видения ресурсов и иных особенностей ситуации и многих других процессов, происходящих в психике решателя.

Прием 1. Принцип дробления. а) Разделить объект на независимые части;

б) Выполнить объект разборным;

в) Увеличить степень дробления объекта.

Адаптация: разделить крышу на много маленьких крыш, стоящих на своих опорах. Тогда основную нагрузку веса снега будут нести опоры и крышу можно делать тонкой.

Решение: сделать крышу в виде множества маленьких крыш на своих опорах. Представленное решение промежуточное, так как сразу возникает проблема большого количества опор.

Прием 2. Принцип вынесения. Отделить от объекта "мешающую" часть ("мешающее" свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).

Адаптация: Мешающей частью является толщина крыши. Она появляется в основном из-за того, что нагрузка на крышу получается изгибающая и напряжения в материале весьма велики. Вот если бы удалось сделать нагрузку только растягивающую, то это значительно снизило бы напряжения.

Решение: Подвесить крышу на многочисленных тонких тросах, закрепленных на зданиях или высоких опорах.

Прием 3. Принцип местного качества.
а) Перейти от одной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной.
б) Разные части объекта должны иметь (выполнять) различные функции.
в) Каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

Адаптация: поскольку у крыши две функции - не пропускать снег и удерживать его вес, следует разделить ее на элементы, специализирующиеся на этих функциях.

Решение: Сделать крышу из двух слоев - один будет снегонепроницаемым, второй силовым, удерживающим весовую нагрузку.

Прием 4. Принцип ассиметрии.
а) Перейти от симметричной формы объекта к асимметричной.
б) Если объект асимметричен, увеличить степень асимметрии.

Адаптация: Исходная ТС представлена как плоскость, лежащая на опорах. Придать ей ассиметричную форму можно наклонив эту плоскость.

Решение: Сделать крышу наклонной, уменьшив тем самым нагрузку на единицу площади крыши, а также с наклонной крыши снег будет скатываться и не будет накапливаться на ней, что тоже уменьшит нагрузку.

Прием 5. Принцип объединения.
а) Соединить однородные или предназначенные для смежных операций объекты.
б) Объединить во времени однородные или смежные операции.

Адаптация: следует соединить все соседние крыши между собой, уменьшив таким образом количество опор и увеличив надежность.

Решение: Делать крыши единым навесом используя в качестве опор все годные для этого сооружения (здания, столбы, киоски и пр.)

Прием 6. Принцип универсальности. Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

Адаптация: Следует добавить крыше выполнение других функций, например быть полом.

Решение: Надстроить над автостоянкой один этаж, который использовать под офис или склад.

Прием 7. Принцип "матрешки".
а) Один объект размещен внутри другого объекта, который, в свою очередь, находится внутри третьего и т. д.;
б) Один объект проходит сквозь полость в другом объекте.

Адаптация: Разместить крышу внутри другой крыши.

Решение: Организовать автостоянку под имеющимися сооружениями - эстакадами, мостами, перекрытиями или заглубить автостоянку под землю.

Прием 8. Принцип антивеса.
а) Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой.
б) Компенсировать вес объекта взаимодействием со средой (за счет аэро-, гидродинамических и других сил).

Адаптация: Следует компенсировать вес снега соединением его или крыши с объектом, обладающим подъемной силой.

Решение: Прикрепить к крыше воздушный шар или дирижабль, который будет удерживать вес снега.

Прием 9. Принцип предварительного антидействия.
а) Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.
б) Если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействие.)

Адаптация: Нужно создать в крыше напряжения, противоположные рабочим.

Решение: Крышу изготавливать из двух или более листов, создав в этом пакете предварительные напряжения и установить ее так, чтобы эти напряжения были противоположны рабочим напряжениям, образующимся под действием веса снега.

Адаптация: Создать в крыше предварительные напряжения, которые использовать для сброса снега с крыши.

Решение: Сделать крышу в виде полотна закрепленного по периметру на пружинах (как в раскладной кровати или батуте). Перед падением снега прогнуть крышу вниз и закрепить. Когда накопится снег, крышу отпустить и тогда, под действием пружин, крыша взлетит вверх и сбросит снег с себя.

Прием 10. Принцип предварительного действия.
а) Заранее выполнить требуемое изменение объекта (полностью или хотя бы частично).
б) Заранее расставить объекты так, чтобы они могли вступить в действие с наиболее удобного места и без затрат времени на доставку. Адаптация: Заранее уменьшить количество снега, падающего на крышу.

Решение: Сдувать падающий снег в сторону от крыши с помощью больших вентиляторов.

Прием 11. Принцип "заранее подложенной подушки". Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

Адаптация: Невысокая надежность крыши может привести к ее обрушению. Следует позаботиться о предотвращении разрушительных последствий.

Решение: Крыша рассчитывается на средние нагрузки и при этом делается еще один уровень под ней на случай обрушения.

Прием 12. Принцип эквипотенциальности.

Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

Адаптация: снег не должен опускаться на крышу, снег не должен покидать тучу.

Решение: Уничтожать снежные тучи или заставить снег идти в другом месте.

Прием 13. Принцип "наоборот".


а) Вместо действия, диктуемого условиями задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать).
б) Сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную - движущейся.
в) Перевернуть объект "вверх ногами".

Адаптация: Перевернуть систему снег-крыша. Снег должен поддерживать крышу. Решение: Сделать крышу в виде сетки, к которой с высокой частотой прикреплено большое количество нитей, свисающих с сетки вниз. Снег должен застревать между нитями, уплотняться и держать себя сам.

Прием 14. Принцип сфероидальности.


а) Перейти от прямолинейных частей объекта к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.
б) Использовать ролики, шарики, спирали.
в) Перейти к вращательному движению, использовать центробежную силу.

Адаптация: перейти от плоской крыши к сферической.

Решение: Сделать крышу в виде сферического или полуцилиндрического купола. Это уменьшит нагрузку на единицу поверхности крыши, а также будет способствовать скатыванию снега с крыши.

Адаптация: перейти к вращательному движению крыши.

Решение: Сделать крышу в виде вращающегося диска. Снег под действием центробежных сил будет слетать с крыши, уменьшая нагрузку. Кроме того. Центробежные силы будут растягивать саму крышу, компенсируя изгибающие нагрузки от веса снега.

Прием 15. Принцип динамичности.


а) Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.
б) Разделить объект на части, способные перемещаться относительно друг друга;
в) Если объект в целом неподвижен, сделать его подвижным, перемещающимся.

Адаптация: сделать крышу подвижной.

Решение: сделать крышу в виде горизонтально расположенной транспортерной ленты. Когда начнет падать снег включить транспортер и тогда крыша будет сбрасывать снег в сторону.

Прием 16. Принцип частичного или избыточного решения.

Если трудно получить 100% требуемого эффекта, надо получить "чуть меньше" или "чуть больше". Задача при этом может существенно упроститься.

Адаптация: "Чуть меньше" означает, что крыша может задерживать не весь упавший на нее снег.

Решение: Сделать крышу с отверстиями, что снизит расход материала. Некоторое количество снега, выпадающего в отверстия не создаст серьезных проблем для движения на автопарковке и будет растоплено шинами и выхлопными газами.

Прием 17. Принцип перехода в другое измерение.


а) Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (то есть на плоскости). Соответственно, задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.
б) Многоэтажная компоновка объектов вместо одноэтажной.
в) Наклонить объект или положить его "набок".
г) Использовать обратную сторону данной площади.
д) Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

Адаптация: Сделать крышу не из одного слоя, а из нескольких.

Решение: Сделать крышу в виде нескольких слоев сеток, расположенных на небольшом расстоянии друг от друга и имеющим разный размер ячейки - крупные ячейки выше, мелкие ниже. Снег будет просачиваться через верхние слои, постепенно достигая нижних. Тогда нагрузка будет распределена по вертикали, и вес приходящийся на одну сетку будет значительно меньше.

Прием 18. Использование механических колебаний.


а) Привести объект в колебательное движение.
б) Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой).
в) Использовать резонансную частоту.
г) Применить вместо механических вибраторов пьезовибраторы.
д) Использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Адаптация: привести крышу в колебательное движение.

Решение: Возбудить в крыше вертикальные колебания, что позволит поддерживать снег за счет динамических сил. Если при этом слегка наклонить крышу, то постепенно снег будет с нее сползать.

Прием 19. Принцип периодического действия.


а) Перейти от непрерывного действия к периодическому (импульсному).
б) Если действие уже осуществляется периодически - изменить периодичность.
в) Использовать паузы между импульсами для другого действия. Адаптация: крыша должна удерживать снег периодически, а периодически не удерживать снег. Крыша должна периодически очищаться от снега. Следует установить на ней периодический очиститель.

Решение: Установить на крыше надувную подушку, в которую периодически резко подавать газ. Надуваясь и увеличиваясь подушка будет сбрасывать снег с себя и крыши.

Прием 20. Принцип непрерывности полезного действия.


а) вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).
б) устранить холостые и промежуточные ходы.

Адаптация: Исходя из этого приема, крыша должна непрерывно находиться под максимальной нагрузкой. Но снег падает периодически, значит нагрузку надо добавить. Например, собрать на крышу весь снег из соседних участков. Тогда оправдано сделать крышу толстой.

Решение: Сделать толстую крышу в виде хранилища снега, куда собирать его со всех соседних участков.

Прием 21. Принцип проскока.

Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

Адаптация: Вредным является процесс удержания снега. Его нужно осуществлять так быстро, чтобы нагрузка на крышу не превзошла критическую. Крыша должна появляться на некоторое время, в течение которого она начнет деформироваться под действием нагрузки, но недостаточное для развития разрушающих деформаций. После чего на ее месте должна оказываться другая, недеформированная крыша.

Решение: Крыша должна представлять собой ленту, движущуюся с огромной скоростью так, чтобы ее участок, на котором лежит снег, не успел деформироваться до разрушающих нагрузок.

Прием 22. Принцип "обратить вред в пользу".


а) Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.
б) Устранить вредный фактор за счет сложения с другим вредным фактором.
в) Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

Адаптация: Вредным фактором является снег. Усилить его - значит увеличить его количество. Если увеличить количество снега аж до самой земли, то он начнет держать себя сам.

Решение: Сделать крышу в виде перевернутых конусов, опирающихся на землю. Снег заполняя конусы будет частично поддерживать себя.

Прием 23. Принцип обратной связи.


а) Ввести обратную связь.
б) Если обратная связь есть - изменить ее.

Адаптация: обратная связь в нашем случае может быть записана так: чем больше снега - тем толще нужна крыша или чем больше снега - тем быстрее его надо убирать. Используя полученное ранее решение с наклоном крыши можно получить его модификацию.

Решение: Наклон крыши увеличивается по мере усиления снегопада.

Прием 24. Принцип "посредника".


а) Использовать промежуточный объект, переносящий или передающий действие.
б) На время присоединить к объекту другой (легко удаляемый) объект.

Адаптация: На время присоединить к крыше элементы, помогающие ей удерживать снег.

Решение: В случае большого количества снега на крыше устанавливать дополнительные опоры, которые убирать после очистки крыши от снега.

Прием 25. Принцип самообслуживания.


а) Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.
б) Использовать отходы (энергии, вещества).

Адаптация: крыша сама должна себя обслуживать. Так как снег она не пропускает (по условию задачи), то обслуживание может заключаться в самоочистке от снега. У крыши должны быть элементы, помогающие ей очиститься от снега. Желательно за счет самого снега.

Решение: Сделать крышу из пружинящих лепестков. Падающий снег, накапливаясь, будет сжимать пружинистые лепестки, которые распрямляясь будут отбрасывать снег в сторону от крыши.

Прием 26. Принцип копирования.
а) Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.
б) Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).
в) Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым.

Адаптация: оптическая копия крыши - это голограмма. Голограмма выполняется с помощью лазерного луча. Если мощность луча достаточно велика, то такая "лазерная" крыша может плавить снег сама.

Решение: Крыша в виде лазерного луча, организованного в плоскость и имеющего достаточную мощность для плавления падающего снега.

Прием 27. Дешевая недолговечность взамен дорогой долговечности. Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

Адаптация: крыша должна стать одноразовой и уничтожаться после каждого снегопада.

Решение: Сделать крышу в виде ковра, к которому прилипает снег. После снегопада ковер со снегом скатать в рулон и отправить на снегоплавильную станцию или складировать до весны, а на крыше расстелить новый ковер.

Прием 28. Замена механической схемы.
а) Заменить механическую систему оптической, акустической или "запаховой".
б) Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.
в) Перейти от неподвижных полей к движущимся, от фиксированных - к меняющимся по времени, от неструктурных - к имеющим определенную структуру.
г) Использовать поля в сочетании с ферромагнитными частицами.

Адаптация: применить для удержания снега электростатические или магнитные поля.

Решение: Перед подлетом снега к крыше его следует электростатически зарядить или намагнитить и далее удерживать или менять траекторию падения с помощью электростатических или магнитных полей.

Прием 29. Использование пневмо- и гидроконструкций. Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные.

Адаптация: использовать надувные конструкции крыши.

Решение: Сделать крышу в виде надувной подушки с постоянным давлением. В этом случае основную нагрузку будет держать газ, а нагрузка на оболочку, работающую только на растяжение будет заметно снижена.

Прием 30. Использование гибких оболочек и тонких пленок.
а) Вместо обычных конструкций использовать гибкие оболочки и тонкие пленки.
б) Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

Адаптация: Так как исходная задача уже подразумевает крышу, как плоскость не имеющую толщины, применение этого приема "в лоб" не даст ничего нового. Значит надо посмотреть на ситуацию по-другому. Пленка - это не обязательно пленка вещества, это может быть пленка воздуха.

Решение: Установить по всей поверхности крыши сопла, подающие воздух. Снег будет или динамически поддерживаться в воздухе или сдуваться в сторону, если крышу или сопла наклонить.

Прием 31. Применение пористых материалов.
а) Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. п.)
б) Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Адаптация: крыша должна быть пористой

Решение: Сделать крышу в виде натянутой сетки с ячейками имеющими размер, не позволяющий снегу проникнуть через них. Расход материала уменьшится.

Решение 2: Сделать толстую крышу из легкого пористого материала с крупными порами. Снег забиваясь в поры будет формировать массу, способную нести силовую нагрузку.

Прием 32. Принцип изменения окраски.
а) Изменить окраску объекта или внешней среды.
б) Изменить степень прозрачности объекта или внешней среды.
в) Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.
г) Если такие добавки уже применяются, использовать меченые атомы.

Адаптация: изменить окраску крыши или снега.

Решение: Если распылить на выпавший снег черную краску, то это будет способствовать быстрейшему его таянию под воздействием солнечных лучей.

Прием 33. Принцип однородности. Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

Адаптация: крыша должна быть сделана из снега.

Решение: Сделать крышу ледяной либо из первого выпавшего снега, либо предварительно соорудить ледяную конструкцию.

Прием 34. Принцип отброса и регенерации частей.
а) Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. д.) или видоизменена непосредственно в ходе работы.
б) Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

Адаптация: крыша должна исчезать выполнив свою функцию - не дать снегу упасть на автостоянку. Тогда она должна исчезать вместе со снегом. Это похоже на непрерывный поток.

Решение: Пустить по наклонной крыше теплую воду, которая стекая, будет забирать с собой падающий на нее снег.

Прием 35. Изменение физико-химических параметров объекта.
а) Изменить агрегатное состояние объекта.
б) Изменить концентрацию или консистенцию.
в) Изменить степень гибкости.
г) Изменить температуру.

Адаптация: изменить агрегатное состояние снега.

Решение: Подогреть крышу и снег лежащий на ней, чтобы он превратился в воду. Тогда он сможет сам стечь с нее уменьшив нагрузку.

Прием 36. Применение фазовых переходов. Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.

Адаптация: Процесс уплотнения снега при его длительном лежании приводит к повышению плотности и прочности снега. Этот эффект можно использовать для поддержания прочности крыши.

Решение: Сделать крышу в виде толстой арочной конструкции с радиальными каналами. Снег заполняя каналы будет спрессовываться по мере приближения к геометрическому центру и станет способен выдерживать силовую нагрузку.

Прием 37. Применение термического расширения.
а) Использовать термическое расширение (или сжатие) материалов.
б) Если термическое расширение уже используется, применить несколько материалов с разными коэффициентами термического расширения.

Адаптация: можно использовать термическое расширение материала крыши для выравнивания нагрузки на нее.

Решение: Сделать крышу из двух листов с разным коэффициентом термического расширения. В результате выпадения снега температурное поле на крыше будет меняться и в крыше будут возникать напряжения, которые можно использовать для компенсации веса снега.

Приeм 38. Применение сильных окислителей.
а) Заменить обычный воздух обогащенным.
б) Заменить обогащенный воздух кислородом.
в) Воздействовать на воздух или кислород ионизирующими излучениями.
г) Использовать озонированный кислород.
д) Заменить озонированный (или ионизированный) кислород озоном.

Основная цель этой цепи приемов - повысить интенсивность процессов.

Адаптация: можно повысить интенсивность таяния или растворения снега.

Решение: Подавать на поверхность крыши специальные химические реагенты, растворяющие снег или переводящие его в жидкое состояние.

Прием 39. Применение инертной среды.
а) Заменить обычную среду инертной.
б) Вести процесс в вакууме.

Адаптация: Понятие "инертный" означает - не реагирующий. Следует сделать снег не реагирующим с крышей, например, исключить или значительно ослабить силу притяжения или удельный вес снега. Это возможно, если превратить его в пар. Решение: При подлете снега к крыше следует превратить его в пар путем нагревания тепловыми или СВЧ установками.

Прием 40. Применение композиционных материалов. Перейти от однородных материалов к композиционным.

Решение: Сделать крышу из композиционного материала.

Представленные решения можно разделить на две основные группы: повышающие несущую способность крыши и уменьшающие снеговую нагрузку на крышу. Следует отметить, что в случае постановки задачи в формулировке "удерживать снег" вторая часть массива решений не была бы получена, несмотря на их дееспособность.

Очевидно также, что не все приемы давали одинаково действенные решения, а некоторые приемы приводили к решениям, похожим на другие. Для того, чтобы оптимизировать работу с приемами была построена "Таблица выбора приема устранения технических противоречий" в которой для разрешения конкретных видов противоречий рекомендовалось применять не все приемы, а только определенные.

Для выбора приемов с помощью таблицы необходимо определить два параметра: что мы хотим улучшить и что при этом ухудшается. Для этого вспомним ТП, записанное в начале разбора: "если толщину крыши сделать большой, то крыша удержит вес снега, но получится очень дорогой; если толщину крыши сделать маленькой, то она будет дешевой, но не сможет удержать вес снега и разрушится". Но в стандартной таблице выбора приемов нет терминов "толщина" и "стоимость". Значит, придется найти адекватные замены этим терминам с учетом особенностей рассматриваемой технической задачи. Сразу нужно отметить, что возможно несколько вариантов замены. Рассмотрим два из возможных.

Вариант замены терминов №1

Как было показано в предварительном анализе, эквивалентом стоимости может служить материалоемкость крыши. Термина "материалоемкость" также нет в таблице, но есть термин "объем неподвижного объекта". Если представлять крышу относительно монолитной конструкцией, то "материалоемкость", как вес материала может быть заменена "объемом неподвижного объекта" (крыши), считая плотность материала постоянной.

Термин "толщина", как линейный размер, может быть заменен на "длину неподвижного объекта".

Тогда получаем, что по условиям задачи надо изменить "длину неподвижного объекта" и при этом ухудшается "объемом неподвижного объекта". С помощью таблицы, определяем рекомендуемые приемы разрешения ТП: №№ 35, 8, 2, 14. Решения, получаемые с помощью этих приемов описаны выше.

Вариант замены терминов №2

Используем часть ТП "если толщину крыши сделать маленькой, то она будет дешевой, но не сможет удержать вес снега и разрушится". Термин "толщина", как и прежде заменяем на "длину неподвижного объекта". Термин "удержать вес" может быть заменен на "прочность", таким образом, у нас при изменении "длины" (толщины) ухудшается "прочность". Но в таблице не оказывается рекомендаций по разрешению такого противоречия. Требуется еще одна замена терминов.

В нашем случае термин "толщина", для подстановки его в графу "что требуется изменить", путем нескольких итераций может быть заменен на "объем неподвижного объекта". Интересно, что в предыдущем варианте этот термин использовался в разделе "что ухудшается". В результате, при паре нужно изменить "объем неподвижного объекта" и при этом ухудшается "прочность", получаем рекомендацию воспользоваться приемами №№ 28, 6, 32.

Легко заметить, что среди них нет ни одного приема из рекомендованных для предыдущего рассмотренного варианта выбора параметров подстановки №1. Получается, что в зависимости от выбранной адаптации задачи к терминам таблицы могут быть рекомендованы совершенно разные приемы даже для одного и того же технического противоречия. Отсюда следует, что к вопросу замены терминов задачи на термины, присутствующие в таблице, следует подходить внимательно и в случае неоднозначности пробовать все возможные варианты для получения большего количества решений. Правда, так можно очень быстро придти к тотальному перебору всех приемов.

Обобщая результаты можно сделать следующие выводы: 1.

Качество решений, получаемых с помощью приемов, зависит как от кругозора решателя, так и от его настойчивости. 3.

Перечень терминов, используемых в качестве входных данных в таблице разрешения ТП, может оказаться недостаточным. Необходима работа по расширению таблицы и заполнению пустых клеток внутри существующей.



Открытие бизнеса